

KILDARE COUNTY COUNCIL PROPOSED SOCIAL HOUSING AT ARDCLOUGH ROAD ENGINEERING SERVICES REPORT

PROJECT NAME: PROPOSED SOCIAL HOUSING AT ARDCLOUGH ROAD

REPORT NAME: ENGINEERING SERVICES REPORT

Document Control Sheet							
Document Reference	TR01						
Report Status	Issued						
Report Date							
Current Revision							
Client:	nt: Kildare County Council						
Client Address:	Kildare County Council,						
	Áras Chill Dara,						
	Devoy Park,						
	Naas,						
	Co. Kildare						
	W91 X77F						
Project Number	11162						

Galway Office	Dublin Office	Castlebar Office
Fairgreen House,	Block 10-4,	Market Square,
Fairgreen Road,	Blanchardstown Corporate Park,	Castlebar,
Galway,	Dublin 15,	Mayo,
H91 AXK8,	D15 X98N,	F23 Y427,
Ireland.	Ireland.	Ireland.
	Tel: +353 (0)1 803 0406	
Tel: +353 (0)91 565 211		Tel: +353 (0)94 902 1401

Revision	Description	Author:	Date	Reviewed By:	Date	Authorised by:	Date
D01	Issued	PF	04/02/2022	AO'S	07/02/2022	AM	07/02/2022

TOBIN Consulting Engineers

Disclaimer

This Document is Copyright of TOBIN Consulting Engineers Limited. This document and its contents have been prepared for the sole use of our Client. No liability is accepted by TOBIN Consulting Engineers Limited for the use of this report, or its contents for any other use than for which it was prepared.

Table of Contents

1.0	INTRODUCTION	3
1.1	APPOINTMENT	3
1.2	ADMINISTRATIVE JURISDICTION	3
1.3	PROPOSED DEVELOPMENT	3
1.4	SITE LOCATION	4
1.5	PROPOSAL	4
2.0	Potable Water Supply	5
2.1	INTRODUCTION	
2.2	PROPOSAL	5
3.0	Wastewater Infrastructure	7
3.1	INTRODUCTION	
3.2	PROPOSAL	
4.0	Surface Water Infrastructure	
4.1	INTRODUCTION	
4.2	DESIGN PRINCIPLES & PRE-PLANNING CONSULTATION W	
	ARE COUNTY COUNCIL	
4.3	SITE INVESTIGATIONS	.10
4.4	PROPOSAL	.10
4.4.1	General	. 10
4.4.2	Attenuation	. 11
4.4.3	Surface Water Storage	. 12
	SuDs (Sustainable Urban Drainage Systems)	
	1Permeable Paving	
	2Dry Swale/Bioretention area	
	3Petrol Interceptor4Hydrobrake	
	5Attenuation Tank	
	6Tree Pits 13	
4.4.5	Treatment Train	. 14
5.0	CONCLUSION	.15
<u>Table</u>	e of Figures	
Figur	re 1-1: Site Location Drawing 11162-2000	3
Figur	re 1-2: Site Layout Drawing 11162-2004	4

Figure 2-1: Existing Potable Water Infrastructure	5
Figure 2-2: Proposed Potable Water Layout	6
Figure 3-1: Existing Foul Water Infrastructure	7
Figure 3-2: Proposed Foul Water Infrastructure	8
Figure 4-1: Water Course in the Sites Vicinity	9
Figure 4-2: Proposed Surface Water Infrastructure	11

Appendices

Appendix A - Site Drawings

Appendix B – Existing Service Maps

Appendix C – Surface Water Calculations

Appendix D – Irish Water Confirmation of Feasibility

Appendix E – Site Investigation Report

1.0 INTRODUCTION

1.1 Appointment

TOBIN Consulting Engineers have been commissioned by Kildare County Council to provide Civil and Structural Consultancy Services for the site of a Proposed Social Housing Development at Ardclough Road, Celbridge Co, Kildare.

1.2 Administrative Jurisdiction

The site is located within the administrative jurisdiction of Kildare County Council, whose offices are located at Devoy Park, Naas, County Kildare.

Figure 1-1: Site Location Drawing 11162-2000

The proposed development is located in Celbridge in Northeast County Kildare, see figure 1-1 above of Site Location drawing 11162-2000, drawing located in Appendix A. The site is zoned primarily for residential development. The site is bounded to the West and North by undeveloped lands, earmarked to be developed into a Park by Kildare County Council. To the east of the site is the Ardclough road and a number of residential units. The South is undeveloped lands used for agricultural purposes.

1.3 Proposed Development

The proposed development at the site will consist of the following:

- 39 No. Residential Units, comprising of single storey, two storey and three storey Dwellings.
 - Associated Site works, including road, footway and ancillary services.

Figure 1-2: Site Layout Drawing 11162-2004

1.4 Site Location

The proposed site encompasses 14,101sq.m (1.41ha) of greenfield land. The site is located along the Ardclough Road south of Celbridge Town, Co. Kildare. The site is bounded to the North, West and South by green field sites currently used for agriculture. To the east the site is bounded by 5 private properties.

1.5 Proposal

The purpose of this report is to address the proposed service infrastructural requirements for the development. In the coming sections the Potable Water, Wastewater and Storm Water proposals will be detailed, and the designed layouts showcased.

The design principles adopted will be those of best engineering practices and standards used and will be from the most recent applicable publications

2.0 POTABLE WATER SUPPLY

2.1 Introduction

Irish Water's records indicate the presence of an existing 101.6" uPVC diameter watermain in Ardclough Road.

Figure 2-1: Existing Potable Water Infrastructure

2.2 Proposal

It is proposed to connect to the 101.6" diameter uPVC watermain in Ardclough Road. A new 100mm internal diameter service pipe is proposed to serve the entire development.

The new service pipe is to include a bulk water meter chamber, 3 fire hydrants, 12 Sluice Valves, a scour valve, wash out hydrant and an air valve in accordance with Irish Water's latest standard details and codes of practice. The design is subject to approval by Irish Water after a Connection Application has been made.

Figure 2-2: Proposed Potable Water Layout

A Pre Connection Application was made to Irish Water, refer to Appendix D for Irish Water's "Confirmation of Feasibility". Irish Water confirmed that the development can be accommodated presently "without infrastructure upgrade by Irish Water".

For further information on the proposed Potable Water layout please refer to DWGs 11162-2020 & 11162-2021 in Appendix A.

3.0 WASTEWATER INFRASTRUCTURE

3.1 Introduction

Irish Water's records indicate a 225mm diameter concrete foul line in Ardclough Road.

Figure 3-1: Existing Foul Water Infrastructure

3.2 Proposal

It is proposed to discharge foul flows from the development to the existing 225mm diameter concrete pipe located in Ardclough Road. It is proposed to discharge all wastewater by gravity.

Irish Water indicated in their Confirmation of Feasibility letter "... There are significant wastewater capacity constraints in this are and a Drainage Area Plan is currently underway in the Lower Liffey Valley Catchment. Irish Water's Capitol Investment Plan projects in the Lower Liffey Valley Catchment (Primrose Hill Pumping Station Project and Castletown Rising Main Project) will provide strategic solutions to the overall capacity constraints. The projects are currently scheduled to be delivered in Q4 2023 and Q4 2025 (this may be subject to change)....Where a connection is proposed in advance of the delivery of strategic solutions in this area, Irish Water are willing to review Storm Sewer Separation proposals from Abbey Farm

Pump Station Catchment, in the order to provide additional wastewater capacity. This would require co-operation/agreement from Kildare County Council, as the storm drainage authority. Storm separation proposals should be on the basis of a factor of 3.0 hydraulic loading reduction during 1 in 1 year storm event...".

The projected programme for delivery of these proposed housing units is Q4 2023/Q1 2024, which would place after the delivery of the Primrose Hill Pumping Station Project, meaning there would be capacity. TOBIN have also begun discussions with Kildare County Council about the potential of Storm Sewer Separation and will engage with Irish Water on this if required when making the Connection Application.

The wastewater layout has been designed in accordance with Irish Water's latest standard details and code of practice. The design is subject to approval by Irish Water after a Connection Application has been made.

Figure 3-2: Proposed Foul Water Infrastructure

A Pre Connection Application was made to Irish Water and their Confirmation of Feasibility can be seen in Appendix D.

For further information on the proposed Wastewater Layout please refer to DWGs 11162-2010 and 11162-2011 in Appendix A.

4.0 SURFACE WATER INFRASTRUCTURE

4.1 Introduction

There is no existing Surface Water infrastructure in the vicinity of the proposed site. The River Liffey flows along the land adjacent to the site on the West and North and continues to its discharge point into the Irish Sea, approximately 30km downstream. The Pausdeen stream is located to the North East of the site and discharges into the River Liffey.

Figure 4-1: Water Course in the Sites Vicinity

4.2 Design Principles & Pre-Planning Consultation with Kildare County Council

The proposed Surface Water Drainage strategy was developed after discussions with Kildare County Council.

The design and management of the Surface Water for the proposed development will comply with the policies and guidelines outlined in the following.

- The Greater Dublin Strategic Drainage Study (GDSDS).
- Kildare County Council Development Plan
- Recommendations for Site Development Works for Housing Areas published by the Department of the Environment.
- Greater Dublin Regional Code of Practice for Drainage Works.
- The SuDs Manual (2015).

The key design principles of the Surface Water drainage are as follows.

- 1. The flow from the development to the River Liffey is designed to equal the natural greenfield runoff in accordance with the GDSDS and sustainable drainage best practice.
- 2. There are no additional or increased flows for the developed site compared to the existing greenfield condition.
- 3. The site will have an Attenuation Area designed to store volumes from the 30 year and 100-year storm events on site in accordance with SuDs best practise. (As space is limited, the volume of water from the storm events will be stored in underground tanks).

4. The design of the attenuation system includes an allowance for 20% climate change.

4.3 Site Investigations

Site Investigation Ltd were commissioned by TOBIN on behalf of the applicant to carry out Site Investigation Works consisting of the following (refer to Appendix E for the full report):

- 12 No. Boreholes, which encountered obstructions between 1.2 metres to 2.4 metres, rotary coring techniques were then applied to four locations.
- 5 No. Trial Pits. to a depth of 1.6 metres to 1.9 metres below existing ground level.
- 5 No. CBR Tests,
- 33 No. Dynamic Probe Tests
- 1 No. Slit Trench investigation.

The boreholes and trial pits revealed cohesive soils across the site. This includes brown overlying grey overlying black slightly gravelly Clay with high cobble and low boulder content. These soils were present to 1.1 metres to 2.7 metres where they were abandoned usually due to obstructions. The rotary coring identified that there is strong, light grey, thickly bedded, fine grained argillaceous Limestone interbedded with dark grey Mudstone bedrock at depths ranging from 2.0 metres to 3.0 metres.

Groundwater ingress occurred within the depth range 1.0 metres to 2.0 metres below existing ground level in all boreholes and trial pits.

Due to the presence of bedrock and the apparent high-water table it was determined that there is no infiltration available into the ground. The high water table is due to the site proximity to the river Liffey.

4.4 Proposal

4.4.1 General

A new surface water drainage system incorporating SuDs features will collect run off from the proposed development. Attenuated surface water will discharge to the River Liffey. The surface water drainage has been designed in accordance with the "Greater Dublin Regional Code of Practice for Drainage Work" (Draft version 6.0) and the Celbridge Local Area Plan 2017-2023.

Surface water drainage for the proposed development is designed using the recommendations of the GDSDS, EN752 and BS8301:1985, with the following parameters applied:

- Return period for pipe network 2 years,
- Time of entry 4 minutes
- Pipe Friction (Ks) 0.6 mm
- Minimum Velocity 0.75 m/s
- M5 2D = 59.1
- M5-60 = 16.5 mm
- Ratio r (M5-60/M5-2D) = 0.279
- Climate Change 20% for rainfall intensities.

The surface water drainage network has been designed and simulated for a range of storm events (including 1 in 1, 1 in 30 and 1 in 100-year storm events) using the Network module of MicroDrainage. Refer to Appendix C for MicroDrainage results.

Figure 4-2: Proposed Surface Water Infrastructure

4.4.2 Attenuation

It is proposed to attenuate runoff from the proposed development to Greenfield Runoff or Q_{bar} as per the recommendations of the GDSDS. Q_{bar} is estimated at 6.1l/s using the *Institute of Hydrology* equation.

$$Q_{bar[rural]} = 0.00108 \ x \ AREA^{0.89} x SAAR^{1.17} x \ SPR^{2.17}$$

Were.

 $Q_{bar[rural]}$ = is the mean annual flood flow from a rural catchment

AREA = the area of the catchment in ha. = 50ha

SAAR = is the standard average annual rainfall = 1000

SPR = Standard Percentage Runoff coefficient for the soil category, where SPR values for the 5 soil types are as follows; Soil 1 = 0.1; Soil 2 = 0.3; Soil 3 = 0.37; Soil 4 = 0.47; Soil 5 = 0.53

A SPR value of 0.37 (Soil Type 3) has now been applied for the subject site. This is based on the new site investigation carried out in July 2021, which indicated that the soil is predominately clayey with generally low permeability.

$$Q_{bar[rural]} = 0.00108 \, x \, 50^{0.89} x 1000^{1.17} x \, 0.37^{2.17}$$

 $Q_{bar[rural]} = 218l/s$ for 50ha or 6.1/s for an area of 1.41ha

4.4.3 Surface Water Storage

Surface water storage volumes have been calculated using the *Source Control* module of the *Microdrainage* software. The total volume of storage required to store runoff from a 1%AEP storm event has been calculated as 375m³, refer to Appendix C for Source Control results.

4.4.4 SuDs (Sustainable Urban Drainage Systems)

A number of SuDs features have been proposed into the surface water drainage system in accordance with the GDSDs. SuDs are incorporated to attenuate runoff and volumes; reduce pollutant concentrations in surface water and to replicate the natural characteristics of surface water run off for the site in its pre-developed state.

The following SuDs features are proposed:

4.4.4.1 Permeable Paving

It is proposed to install permeable paving within the car parking areas of the site. The water once permeated into the pavement will be directed towards the surface water drainage infrastructure, through falls and perforated pipes if the rate of water permeating through the paving is greater than the infiltration into the soil. The inclusion of the permeable paving will slow the surface water run off at source, treat the surface water runoff and provide storage. Refer to figure 4-3 below.

Figure 4-3: Typical Cross Section of an no infiltration permeable paving (Extract from CIRA SuDs Manual)

4.4.4.2 Dry Swale/Bioretention area

The dry swale is a vegetated conveyance channel, designed to include a filter bed of prepared soil that overlays an underdrain system. This underdrain provides additional treatment and conveyance capacity beneath the base of the swale/bioretention and prevents water logging. Refer to figure 4-4 below. Surface Water will be directed to the dry sale from the road and footways through falls and an opening in the kerb line.

Figure 4-4: Typical Cross Section of dry swale/bioretention area (Extract from CIRA SuDs Manual)

4.4.4.3 Petrol Interceptor

It is proposed to flow all the surface water collected through a petrol interceptor before discharging to the River Liffey to ensure a certain level of treatment is provided to the surface water.

4.4.4.4 Hydrobrake

The rate of discharge from the proposed development will be controlled using a Hydrobrake. The total rate of discharged was determined using the QBAR greenfield run off method. The total rate of discharge was calculated at 6.1l/s.

4.4.4.5 Attenuation Tank

Surface water runoff from the site will be collected and directed towards the Hydrobrake in manhole S09, once the flow entering the infrastructure exceeds the Hydrobrake Flow Capacity, water will begin to flood the infrastructure and begin to fill the Attenuation Tank located at the east of the site. The surface water infrastructure will cater for the storage of a 1 in 100-year storm event.

4.4.4.6 <u>Tree Pits</u>

The Tree Pit is a infiltration SuDs component which allows for surface water runoff to infiltrate into the soil around a planted tree. The tree is used then to absorb a portion of the runoff through root pores. An overflow perforated pipe will be provided in each tree pit so localised ponding does not occur and cause root rot. Tree pits provide additional treatment and storage capacity beneath the base of the tree. Refer to figure 4-5 below. Surface Water will be directed to the tree pit from the road and footways through falls and an opening in the kerb line.

Figure 4-5: Typical Cross Section of Tree Pit Extract from CIRA SuDs Manual)

4.4.5 Treatment Train

Through the SuDs measures described above, the surface water management (treatment train) approach has been incorporated into the development in accordance with the GDSDS. This will assure the surface water runoff quantity and quality issues are addressed.

In accordance with the GDSDS, the following four objectives of the treatment train provide an integrated and balanced approach to help mitigate the changes in surface water runoff flows that occur as land is urbanised and to help mitigate the impacts of surface water quality on receiving systems:

- 1. **Pollution Prevention**: spill prevention (protection provided by Petrol Interceptor), recycling, public awareness, and participation.
- 2. Source Control: conveyance and infiltration of runoff (provided by the proposed surface water network, Attenuation Tank, Tree Pits, Dry Swale, Hydrobrake, Petrol Interceptor and Permeable Paving).
- 3. **Site Control:** reduction in volume and rate of surface water runoff, with some additional treatment provided (provided by Attenuation Tank, Tree Pits, Dry Swale, Hydrobrake, Petrol Interceptor and Permeable Paving).
- 4. **Regional Control:** Interception of runoff downstream of all source and on-site controls to provide follow-up flow management and water quality treatment (provided by the River Liffey).

The above measures ensure a suitable treatment train is provided in accordance with GDSDS.

5.0 CONCLUSION

There is sufficient capacity within the Potable Water infrastructure.

Through further liaison with Irish Water there will be sufficient capacity within the Wastewater infrastructure for the development once the upgrade works are complete or Kildare County Council provide Storm Sewer Separation.

The Surface Water collection will be slowed at source through SuDS features, with all the surface water being directed into a piped system before being discharged to the River Liffey via a Hydrobrake.

Appendix A – Site Drawings

11162-2000 Site Location

11162-2004 Site Layout

11162-2010 Proposed Drainage Layout, 2

11162-2020 Proposed Watermain Layout,

11162-2040 Drainage Details, Sheet 1 of 2

11162-2041 Drainage Details, Sheet 2 of 2

11162-2042 Bedding Details,

11162-2043 SuDs Details,

Appendix B – Existing Service Maps

TOBIN Consulting Engineers		Page 1
Block 10-3		
Blanchardstown Corporate Park		
Dublin 15		Micro
Date 07/02/2022 15:51	Designed by patrick.fanning	Drainage
File 11162_DRAINAGEMODEL_20210723.MDX	Checked by	Dialilade
Micro Drainage	Network 2018.1.1	-

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for Storm

Pipe Sizes GDSDS Manhole Sizes IW Foul

FSR Rainfall Model - Scotland and Ireland

Return Period (years) 5 Foul Sewage (1/s/ha) 0.000 Maximum Backdrop Height (m) 1.500 M5-60 (mm) 16.500 Volumetric Runoff Coeff. 0.750 Min Design Depth for Optimisation (m) 1.200 Ratio R 0.279 PIMP (%) 100 Min Vel for Auto Design only (m/s) 0.75

Maximum Rainfall (mm/hr) 50 Add Flow / Climate Change (%) 20 Min Slope for Optimisation (1:X) 300

Maximum Time of Concentration (mins) 30 Minimum Backdrop Height (m) 0.200

Designed with Level Soffits

Time Area Diagram for Storm

Time Area Time Area (mins) (ha) (mins) 4-8 0.315

Total Area Contributing (ha) = 0.614

Total Pipe Volume $(m^3) = 18.495$

Network Design Table for Storm

TOBIN Consulting Engineers			
Block 10-3			
Blanchardstown Corporate Park			
Dublin 15		Micro	
Date 07/02/2022 15:51	Designed by patrick.fanning	Drainage	
File 11162_DRAINAGEMODEL_20210723.MDX	Checked by	Dialilade	
Micro Drainage	Network 2018.1.1	1	

Network Design Table for Storm

- Indicates pipe length does not match coordinates

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	ase (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
1.000	14.182	0.071	200.0	0.054	4.00	0.0	0.600	0	225	Pipe/Conduit	€
1.001	49.493	0.220	225.0	0.072	0.00	0.0	0.600	0	225	Pipe/Conduit	
1.002	13.044	0.058	225.0	0.034	0.00	0.0	0.600	0	225	Pipe/Conduit	ŏ
1.003	34.402	0.153	225.0	0.036	0.00	0.0	0.600	0	225	Pipe/Conduit	ď
2.000	31.558	0.158	200.0	0.102	4.00	0.0	0.600	0	225	Pipe/Conduit	•
1.004	52.155	0.174	300.0	0.158	0.00	0.0	0.600	0	375	Pipe/Conduit	€

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)		Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
1.000	50.00	4.26	52.155	0.054	0.0	0.0	1.5	0.92	36.6	8.9
1.001	50.00	5.21	52.084	0.126	0.0	0.0	3.4	0.87	34.5	20.5
1.002	50.00	5.46	51.864	0.160	0.0	0.0	4.3	0.87	34.5	26.0
1.003	50.00	6.12	51.806	0.195	0.0	0.0	5.3	0.87	34.5	31.8
2.000	50.00	4.57	52.235	0.102	0.0	0.0	2.8	0.92	36.6	16.5
1.004	50.00	6.95	51.503	0.456	0.0	0.0	12.3	1.04	115.0	74.0

TOBIN Consulting Engineers		Page 3
Block 10-3		
Blanchardstown Corporate Park		
Dublin 15		Micro
Date 07/02/2022 15:51	Designed by patrick.fanning	Drainage
File 11162_DRAINAGEMODEL_20210723.MDX	Checked by	Dialilade
Micro Drainage	Network 2018.1.1	'

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)		k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
1.005	12.415	0.041	300.0	0.038	0.00	0.0	0.600	0	375	Pipe/Conduit	•
3.000	30.273	0.151	200.0	0.053	4.00	0.0	0.600	0	225	Pipe/Conduit	0
	9.586 0.500# 30.540	0.257	1.9	0.026 0.041 0.000	0.00 0.00 0.00	0.0	0.600 0.600 0.600	0	375	Pipe/Conduit Pipe/Conduit Pipe/Conduit	99

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow (1/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)
1.005	50.00	7.15	51.329	0.494	0.0	0.0	13.4	1.04	115.0	80.3
3.000	50.00	4.55	51.875	0.053	0.0	0.0	1.4	0.92	36.6	8.7
1.006	50.00		51.288 51.256	0.573	0.0	0.0		1.04	115.0 1443.6	93.2
1.008	50.00		50.999	0.614	0.0	0.0		1.04	115.0	99.8

TOBIN Consulting Engineers		Page 4
Block 10-3		
Blanchardstown Corporate Park		
Dublin 15		Micro
Date 07/02/2022 15:51	Designed by patrick.fanning	
File 11162_DRAINAGEMODEL_20210723.MDX	Checked by	Drainage
Micro Drainage	Network 2018.1.1	

Manhole Schedules for Storm

MH Name	MH CL (m)	MH Depth (m)	Coni	MH nection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
1	53.580	1.425	Open	Manhole	1200	1.000	52.155	225				
2	53.460	1.376	Open	Manhole	1200	1.001	52.084	225	1.000	52.084	225	
3	53.250	1.386	Open	Manhole	1200	1.002	51.864	225	1.001	51.864	225	
4	53.350	1.544	Open	Manhole	1200	1.003	51.806	225	1.002	51.806	225	
5	53.660	1.425	Open	Manhole	1200	2.000	52.235	225				
5	53.490	1.987	Open	Manhole	1350	1.004	51.503	375	1.003	51.653	225	
									2.000	52.077	225	424
7	53.560	2.231	Open	Manhole	1350	1.005	51.329	375	1.004	51.329	375	
6	53.300	1.425	Open	Manhole	1200	3.000	51.875	225				
6	53.450	2.162	Open	Manhole	1350	1.006	51.288	375	1.005	51.288	375	
									3.000	51.724	225	286
7	53.300	2.044	Open	Manhole	1350	1.007	51.256	375	1.006	51.256	375	
12	53.300	2.301	Open	Manhole	1350	1.008	50.999	375	1.007	50.999	375	
	53.300	2.403	Open	Manhole	0		OUTFALL		1.008	50.897	375	

TOBIN Consulting Engineers		Page 5
Block 10-3		
Blanchardstown Corporate Park		
Dublin 15		Micro
Date 07/02/2022 15:51	Designed by patrick.fanning	Drainage
File 11162_DRAINAGEMODEL_20210723.MDX	Checked by	pialiage
Micro Drainage	Network 2018.1.1	

PIPELINE SCHEDULES for Storm

<u>Upstream Manhole</u>

- Indicates pipe length does not match coordinates

PN	Hyd Sect		MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
1.000	0	225	1	53.580	52.155	1.200	Open Manhole	1200
1.001	0	225	2	53.460	52.084	1.151	Open Manhole	1200
1.002	0	225	3	53.250	51.864	1.161	Open Manhole	1200
1.003	0	225	4	53.350	51.806	1.319	Open Manhole	1200
2.000	0	225	5	53.660	52.235	1.200	Open Manhole	1200

Downstream Manhole

PN	Length (m)	Slope (1:X)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
	\ /	(=,		\ /	ν/	ν/		\ <i>,</i>
1.000	14.182	200.0	2	53.460	52.084	1.151	Open Manhole	1200
1.001	49.493	225.0	3	53.250	51.864	1.161	Open Manhole	1200
1.002	13.044	225.0	4	53.350	51.806	1.319	Open Manhole	1200
1.003	34.402	225.0	5	53.490	51.653	1.612	Open Manhole	1350
2.000	31.558	200.0	5	53.490	52.077	1.188	Open Manhole	1350

TOBIN Consulting Engineers		Page 6
Block 10-3		
Blanchardstown Corporate Park		
Dublin 15		Micro
Date 07/02/2022 15:51	Designed by patrick.fanning	Drainage
File 11162_DRAINAGEMODEL_20210723.MDX	Checked by	Dialilade
Micro Drainage	Network 2018.1.1	,

PIPELINE SCHEDULES for Storm

<u>Upstream Manhole</u>

PN	Hyd	Diam	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	Sect	(mm)	Name	(m)	(m)	(m)	Connection	(mm)
1.004	0	375	5	53.490	51.503	1.612	Open Manhole	1350
1.005	0	375	7	53.560	51.329	1.856	Open Manhole	1350
3.000	0	225	6	53.300	51.875	1.200	Open Manhole	1200
1.006	0	375	6	53.450	51.288	1.787	Open Manhole	1350
1.007	0	375	7	53.300	51.256	1.669	Open Manhole	1350
1.008	0	375	12	53.300	50.999	1.926	Open Manhole	1350

<u>Downstream Manhole</u>

;	PN	Length (m)	Slope (1:X)			I.Level (m)	D.Depth (m)	MH Connection	MH DI	AM., (mm)	L*W
		52.155 12.415			53.560 53.450	51.329 51.288		Open Manhole Open Manhole			350 350
3.	000	30.273	200.0	6	53.450	51.724	1.501	Open Manhole		1	350
1.	007	9.586 0.500# 30.540	1.9	7 12		51.256 50.999 50.897	1.926	Open Manhole Open Manhole Open Manhole			350 350 0

TOBIN Consulting Engineers		Page 7
Block 10-3		
Blanchardstown Corporate Park		
Dublin 15		Micro
Date 07/02/2022 15:51	Designed by patrick.fanning	Drainage
File 11162_DRAINAGEMODEL_20210723.MDX	Checked by	Dialilade
Micro Drainage	Network 2018.1.1	1

Area Summary for Storm

Pipe	PIMP	PIMP	PIMP	Gro	ss	Im	p.	Pipe	Total
Number	Type	Name	(%)	Area	(ha)	Area	(ha)	(ł	na)
1.000	User	_	100	0	0.014	(0.014		0.014
1.000	User	_	100		0.012		0.012		0.026
	User	_	100		0.028		0.028		0.054
1.001	User	_	100		0.021		0.021		0.021
1.001	User	_	100		0.051		0.051		0.072
1.002	User	_	60		.004		0.002		0.002
	User	_	60		0.003		0.002		0.004
	User	_	100	С	.014	C	0.014		0.018
	User	_	100	С	.016	C	0.016		0.034
1.003	User	_	60	C	.007	(0.004		0.004
	User	_	60	C	.009	(.006		0.010
	User	_	100	C	.022	(0.022		0.032
	User	_	100	C	.004	C	.004		0.036
2.000	User	_	60	C	800.0	C	.005		0.005
	User	_	100	C	.009	C	0.009		0.014
	User	_	100	C	.013	C	.013		0.027
	User	_	100	C	.018	C	0.018		0.045
	User	_	100	C	.024	C	0.024		0.069
	User	-	100	C	0.033	(0.033		0.102
1.004	User	-	60	C	.009	(.006		0.006
	User	-	60	C	.009	C	.006		0.011
	User	_	60	C	.009	C	.006		0.017
	User	-	100	C	.014	C	0.014		0.031
	User	-	100	C	.016	C	0.016		0.047
	User	-	100		.017	C	0.017		0.063
	User	-	100	C	.025	C	0.025		0.088

TOBIN Consulting Engineers		Page 8
Block 10-3		
Blanchardstown Corporate Park		
Dublin 15		Micro
Date 07/02/2022 15:51	Designed by patrick.fanning	Drainage
File 11162_DRAINAGEMODEL_20210723.MDX	Checked by	Dialilade
Micro Drainage	Network 2018.1.1	'

Area Summary for Storm

Pipe	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total
Number	Type	Name	(%)	Area (ha)	Area (ha)	(ha)
	User	-	100	0.015	0.015	0.103
	User	-	100	0.055	0.055	0.158
1.005	User	-	100	0.012	0.012	0.012
	User	-	100	0.025	0.025	0.037
	User	-	60	0.002	0.001	0.038
3.000	User	-	60	0.005	0.003	0.003
	User	_	100	0.017	0.017	0.020
	User	-	100	0.013	0.013	0.033
	User	_	100	0.020	0.020	0.053
1.006	User	_	60	0.008	0.005	0.005
	User	-	60	0.008	0.005	0.010
	User	-	100	0.012	0.012	0.022
	User	_	60	0.008	0.005	0.026
1.007	User	-	100	0.023	0.023	0.023
	User	_	100	0.018	0.018	0.041
1.008	_	_	100	0.000	0.000	0.000
				Total	Total	Total
				0.651	0.614	0.614

Free Flowing Outfall Details for Storm

Out	fall	Outfall	C. Le	zel I.	Level		Min	D,L	W
Pipe	Number	Name	(m)		(m)	I.	Level	(mm)	(mm)
							(m)		
	1.008		53.3	300	50.897		0.000	0	0
		©1	982-2	018 I	nnovy	ze			

TOBIN Consulting Engineers		Page 9
Block 10-3		
Blanchardstown Corporate Park		
Dublin 15		Micro
Date 07/02/2022 15:51	Designed by patrick.fanning	
File 11162_DRAINAGEMODEL_20210723.MDX	Checked by	Drainage
Micro Drainage	Network 2018.1.1	,

Simulation Criteria for Storm

Volumetric Runoff Coeff	0.750	Manhole Headloss Coeff (Global)	0.500	Inle	et Coeffiecient	0.800
Areal Reduction Factor	1.000	Foul Sewage per hectare (1/s)	0.000	Flow per Person per I	Day (1/per/day)	0.000
Hot Start (mins)	0	Additional Flow - % of Total Flow	20.000	I	Run Time (mins)	60
Hot Start Level (mm)	0	MADD Factor * 10m3/ha Storage	2.000	Output I	Interval (mins)	1

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

Synthetic Rainfall Details

Return Period (years) FSR M5-60 (mm) 16.500 Cv (Summer) 0.750 Return Period (years) 5 Ratio R 0.279 Cv (Winter) 0.840 Region Scotland and Ireland Profile Type Summer Storm Duration (mins) 30

TOBIN Consulting Engineers		Page 10
Block 10-3		
Blanchardstown Corporate Park		
Dublin 15		Micro
Date 07/02/2022 15:51	Designed by patrick.fanning	
File 11162_DRAINAGEMODEL_20210723.MDX	Checked by	Drainage
Micro Drainage	Network 2018.1.1	-

Online Controls for Storm

Hydro-Brake® Optimum Manhole: 7, DS/PN: 1.007, Volume (m³): 3.8

Unit Reference MD-SHE-0101-6100-2044-6100 Sump Available Yes 2.044 Design Head (m) Diameter (mm) 101 Design Flow (1/s) 6.1 Invert Level (m) 51.256 Flush-Flo™ Calculated Minimum Outlet Pipe Diameter (mm) 150 Objective Minimise upstream storage Suggested Manhole Diameter (mm) 1200 Application Surface

Control Points	Head (m)	Flow (1/s)	Control Points	Head (m)	Flow (1/s)
Design Point (Calculated)	2.044	6.1	Kick-Flo®	0.904	4.2
Flush-Flo™	0.440	5.3	Mean Flow over Head Range	_	4.9

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (1/s)	Depth (m)	Flow $(1/s)$	Depth (m)	Flow (1/s)						
0.100	3.3	0.600	5.2	1.600	5.4	2.600	6.8	5.000	9.3	7.500	11.3
0.200	4.7	0.800	4.7	1.800	5.7	3.000	7.3	5.500	9.7	8.000	11.6
0.300	5.1	1.000	4.4	2.000	6.0	3.500	7.8	6.000	10.1	8.500	12.0
0.400	5.2	1.200	4.8	2.200	6.3	4.000	8.4	6.500	10.5	9.000	12.3
0.500	5.2	1.400	5.1	2.400	6.6	4.500	8.8	7.000	10.9	9.500	12.6

TOBIN Consulting Engineers		Page 11
Block 10-3		
Blanchardstown Corporate Park		
Dublin 15		Micro
Date 07/02/2022 15:51	Designed by patrick.fanning	
File 11162_DRAINAGEMODEL_20210723.MDX	Checked by	Drainage
Micro Drainage	Network 2018.1.1	1

Storage Structures for Storm

Tank or Pond Manhole: 7, DS/PN: 1.007

Invert Level (m) 51.256

Depth (m) Area (m²) Depth (m) Area (m²) Depth (m) Area (m²)
0.000 240.0 1.000 240.0 1.001 0.0

TOBIN Consulting Engineers		Page 1
Block 10-3		
Blanchardstown Corporate Park		
Dublin 15		Micro
Date 07/02/2022 15:52	Designed by patrick.fanning	Drainage
File 11162_DRAINAGEMODEL_20210723.MDX	Checked by	niamade
Micro Drainage	Network 2018.1.1	

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for Storm

Pipe Sizes GDSDS Manhole Sizes IW Foul

FSR Rainfall Model - Scotland and Ireland

Return Period (years) 5 Foul Sewage (1/s/ha) 0.000 Maximum Backdrop Height (m) 1.500 M5-60 (mm) 16.500 Volumetric Runoff Coeff. 0.750 Min Design Depth for Optimisation (m) 1.200 Ratio R 0.279 PIMP (%) 100 Min Vel for Auto Design only (m/s) 0.75

Maximum Rainfall (mm/hr) 50 Add Flow / Climate Change (%) 20 Min Slope for Optimisation (1:X)

300

Maximum Time of Concentration (mins) 30 Minimum Backdrop Height (m) 0.200

Designed with Level Soffits

Time Area Diagram for Storm

Time Area Time Area (mins) (ha) (mins) (ha)

0-4 0.300 4-8 0.315

Total Area Contributing (ha) = 0.614

Total Pipe Volume $(m^3) = 18.495$

Network Design Table for Storm

TOBIN Consulting Engineers		Page 2
Block 10-3		
Blanchardstown Corporate Park		
Dublin 15		Micro
Date 07/02/2022 15:52	Designed by patrick.fanning	
File 11162_DRAINAGEMODEL_20210723.MDX	Checked by	Drainage
Micro Drainage	Network 2018.1.1	<u> </u>

Network Design Table for Storm

- Indicates pipe length does not match coordinates

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	ase (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
1.000	14.182	0.071	200.0	0.054	4.00	0.0	0.600	0	225	Pipe/Conduit	€
1.001	49.493	0.220	225.0	0.072	0.00	0.0	0.600	0	225	Pipe/Conduit	
1.002	13.044	0.058	225.0	0.034	0.00	0.0	0.600	0	225	Pipe/Conduit	ĕ
1.003	34.402	0.153	225.0	0.036	0.00	0.0	0.600	0	225	Pipe/Conduit	ď
2.000	31.558	0.158	200.0	0.102	4.00	0.0	0.600	0	225	Pipe/Conduit	•
1.004	52.155	0.174	300.0	0.158	0.00	0.0	0.600	0	375	Pipe/Conduit	ď

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)		Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
1.000	50.00	4.26	52.155	0.054	0.0	0.0	1.5	0.92	36.6	8.9
1.001	50.00	5.21	52.084	0.126	0.0	0.0	3.4	0.87	34.5	20.5
1.002	50.00	5.46	51.864	0.160	0.0	0.0	4.3	0.87	34.5	26.0
1.003	50.00	6.12	51.806	0.195	0.0	0.0	5.3	0.87	34.5	31.8
2.000	50.00	4.57	52.235	0.102	0.0	0.0	2.8	0.92	36.6	16.5
1.004	50.00	6.95	51.503	0.456	0.0	0.0	12.3	1.04	115.0	74.0

TOBIN Consulting Engineers	Page 3	
Block 10-3		
Blanchardstown Corporate Park		
Dublin 15		Micro
Date 07/02/2022 15:52	Designed by patrick.fanning	
File 11162_DRAINAGEMODEL_20210723.MDX	Checked by	Drainage
Micro Drainage	Network 2018.1.1	,

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)		k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
1.005	12.415	0.041	300.0	0.038	0.00	0.0	0.600	0	375	Pipe/Conduit	•
3.000	30.273	0.151	200.0	0.053	4.00	0.0	0.600	0	225	Pipe/Conduit	0
	9.586 0.500# 30.540	0.257	1.9	0.026 0.041 0.000	0.00 0.00 0.00	0.0	0.600 0.600 0.600	0	375	Pipe/Conduit Pipe/Conduit Pipe/Conduit	99

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul Add Flow		Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow (1/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)
1.005	50.00	7.15	51.329	0.494	0.0	0.0	13.4	1.04	115.0	80.3
3.000	50.00	4.55	51.875	0.053	0.0	0.0	1.4	0.92	36.6	8.7
1.006 1.007	50.00		51.288 51.256	0.573 0.614	0.0	0.0		1.04 13.07	115.0 1443.6	93.2 99.8
1.008	50.00	7.80	50.999	0.614	0.0	0.0	16.6	1.04	115.0	99.8

TOBIN Consulting Engineers		Page 4
Block 10-3		
Blanchardstown Corporate Park		
Dublin 15		Micro
Date 07/02/2022 15:52	Designed by patrick.fanning	
File 11162_DRAINAGEMODEL_20210723.MDX	Checked by	Drainage
Micro Drainage	Network 2018.1.1	

Manhole Schedules for Storm

MH Name	MH CL (m)	MH Depth (m)	Conr	MH nection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop
1	53.580	1.425	Open	Manhole	1200	1.000	52.155	225				
			_	Manhole	1200	1.001	52.084	225	1.000	52.084	225	
3	53.250	1.386	Open	Manhole	1200	1.002	51.864	225	1.001	51.864	225	
4	53.350	1.544	Open	Manhole	1200	1.003	51.806	225	1.002	51.806	225	
5	53.660	1.425	Open	Manhole	1200	2.000	52.235	225				
5	53.490	1.987	Open	Manhole	1350	1.004	51.503	375	1.003	51.653	225	
									2.000	52.077	225	424
7	53.560	2.231	Open	Manhole	1350	1.005	51.329	375	1.004	51.329	375	
6	53.300	1.425	Open	Manhole	1200	3.000	51.875	225				
6	53.450	2.162	Open	Manhole	1350	1.006	51.288	375	1.005	51.288	375	
									3.000	51.724	225	286
7	53.300	2.044	Open	Manhole	1350	1.007	51.256	375	1.006	51.256	375	
12	53.300	2.301	Open	Manhole	1350	1.008	50.999	375	1.007	50.999	375	
	53.300	2.403	Open	Manhole	0		OUTFALL		1.008	50.897	375	

TOBIN Consulting Engineers		Page 5
Block 10-3		
Blanchardstown Corporate Park		
Dublin 15		Micro
Date 07/02/2022 15:52	Designed by patrick.fanning	Drainage
File 11162_DRAINAGEMODEL_20210723.MDX	Checked by	Dialilade
Micro Drainage	Network 2018.1.1	

PIPELINE SCHEDULES for Storm

<u>Upstream Manhole</u>

- Indicates pipe length does not match coordinates

PN	Hyd	Diam	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	Sect	(mm)	Name	(m)	(m)	(m)	Connection	(mm)
1.000	0	225	1	53.580	52.155	1.200	Open Manhole	1200
1.001	0	225	2	53.460	52.084		Open Manhole	1200
1.002	0	225	3	53.250	51.864	1.161	Open Manhole	1200
1.003	0	225	4	53.350	51.806	1.319	Open Manhole	1200
2.000	0	225	5	53.660	52.235	1.200	Open Manhole	1200

Downstream Manhole

PN	-	-				D.Depth		MH DIAM., L*W
	(m)	(1:X)	Name	(m)	(m)	(m)	Connection	(mm)
1.000	14.182	200.0	2	53.460	52.084	1.151	Open Manhole	1200
1.001	49.493	225.0	3	53.250	51.864	1.161	Open Manhole	1200
1.002	13.044	225.0	4	53.350	51.806	1.319	Open Manhole	1200
1.003	34.402	225.0	5	53.490	51.653	1.612	Open Manhole	1350
2.000	31.558	200.0	5	53.490	52.077	1.188	Open Manhole	1350

TOBIN Consulting Engineers		Page 6
Block 10-3		
Blanchardstown Corporate Park		
Dublin 15		Micro
Date 07/02/2022 15:52	Designed by patrick.fanning	Drainage
File 11162_DRAINAGEMODEL_20210723.MDX	Checked by	Dialilade
Micro Drainage	Network 2018.1.1	1

PIPELINE SCHEDULES for Storm

<u>Upstream Manhole</u>

PN	Hyd	${\tt Diam}$	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	Sect	(mm)	Name	(m)	(m)	(m)	Connection	(mm)
1.004	0	375	5	53.490	51.503	1.612	Open Manhole	1350
1.005	0	375	7	53.560	51.329	1.856	Open Manhole	1350
3.000	0	225	6	53.300	51.875	1.200	Open Manhole	1200
1.006	0	375	6	53.450	51.288	1.787	Open Manhole	1350
1.007	0	375	7	53.300	51.256	1.669	Open Manhole	1350
1.008	0	375	12	53.300	50.999	1.926	Open Manhole	1350

<u>Downstream Manhole</u>

PN	Length (m)	Slope (1:X)			I.Level (m)	D.Depth (m)	MH Connection	МН	DIAM., (mm)	L*W
	52.155 12.415		7 6	53.560 53.450	51.329 51.288		Open Manhole Open Manhole			1350 1350
3.000	30.273	200.0	6	53.450	51.724	1.501	Open Manhole			1350
1.007	9.586 0.500# 30.540	1.9	7 12		51.256 50.999 50.897	1.926	Open Manhole Open Manhole Open Manhole			1350 1350 0

TOBIN Consulting Engineers		Page 7
Block 10-3		
Blanchardstown Corporate Park		
Dublin 15		Micro
Date 07/02/2022 15:52	Designed by patrick.fanning	Drainage
File 11162_DRAINAGEMODEL_20210723.MDX	Checked by	Dialilade
Micro Drainage	Network 2018.1.1	<u>'</u>

Area Summary for Storm

Pipe	PIMP	PIMP	PIMP	Gro	ss	Im	p.	Pipe	Total
Number	Type	Name	(%)	Area	(ha)	Area	(ha)	(ł	na)
1.000	User	_	100	^	0.014	(0.014		0.014
1.000	User	_	100		0.012		0.012		0.026
	User	_	100		0.028		0.028		0.054
1.001	User	_	100		0.021		0.021		0.021
1.001	User	_	100		0.051		0.051		0.072
1.002	User	_	60		.004		0.002		0.002
	User	_	60		0.003		0.002		0.004
	User	_	100	С	.014	C	0.014		0.018
	User	_	100	С	.016	C	0.016		0.034
1.003	User	_	60	C	.007	(0.004		0.004
	User	_	60	C	.009	(.006		0.010
	User	_	100	C	.022	(0.022		0.032
	User	_	100	C	.004	C	.004		0.036
2.000	User	_	60	C	800.0	C	.005		0.005
	User	_	100	C	.009	C	0.009		0.014
	User	_	100	C	.013	C	.013		0.027
	User	_	100	C	.018	C	0.018		0.045
	User	_	100	C	.024	C	0.024		0.069
	User	-	100	C	0.033	(0.033		0.102
1.004	User	-	60	C	.009	(.006		0.006
	User	-	60	C	.009	C	.006		0.011
	User	_	60	C	.009	C	.006		0.017
	User	-	100	C	.014	C	0.014		0.031
	User	-	100	C	.016	C	0.016		0.047
	User	-	100		.017	C	0.017		0.063
	User	-	100	C	.025	C	0.025		0.088

TOBIN Consulting Engineers		Page 8
Block 10-3		
Blanchardstown Corporate Park		
Dublin 15		Micro
Date 07/02/2022 15:52	Designed by patrick.fanning	Drainage
File 11162_DRAINAGEMODEL_20210723.MDX	Checked by	Dialilade
Micro Drainage	Network 2018.1.1	1

Area Summary for Storm

Pipe	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total
Number	Type	Name	(%)	Area (ha)	Area (ha)	(ha)
	User	-	100	0.015	0.015	0.103
	User	-	100	0.055	0.055	0.158
1.005	User	-	100	0.012	0.012	0.012
	User	-	100	0.025	0.025	0.037
	User	_	60	0.002	0.001	0.038
3.000	User	-	60	0.005	0.003	0.003
	User	_	100	0.017	0.017	0.020
	User	-	100	0.013	0.013	0.033
	User	_	100	0.020	0.020	0.053
1.006	User	_	60	0.008	0.005	0.005
	User	_	60	0.008	0.005	0.010
	User	-	100	0.012	0.012	0.022
	User	_	60	0.008	0.005	0.026
1.007	User	-	100	0.023	0.023	0.023
	User	_	100	0.018	0.018	0.041
1.008	_	_	100	0.000	0.000	0.000
				Total	Total	Total
				0.651	0.614	0.614

Free Flowing Outfall Details for Storm

Out	fall	Outfall	C. Le	zel I.	Level		Min	D,L	W
Pipe	Number	Name	(m)		(m)	I.	Level	(mm)	(mm)
							(m)		
	1.008		53.3	300	50.897		0.000	0	0
		©1	982-2	018 I	nnovy	ze			

TOBIN Consulting Engineers		Page 9
Block 10-3		
Blanchardstown Corporate Park		
Dublin 15		Micro
Date 07/02/2022 15:52	Designed by patrick.fanning	Drainage
File 11162_DRAINAGEMODEL_20210723.MDX	Checked by	Dialilade
Micro Drainage	Network 2018.1.1	'

Simulation Criteria for Storm

Volumetric Runoff Coeff	0.750	Manhole Headloss Coeff (Global)	0.500	Inle	et Coeffiecient	0.800
Areal Reduction Factor	1.000	Foul Sewage per hectare (1/s)	0.000	Flow per Person per I	Day (1/per/day)	0.000
Hot Start (mins)	0	Additional Flow - % of Total Flow	20.000	I	Run Time (mins)	60
Hot Start Level (mm)	0	MADD Factor * 10m3/ha Storage	2.000	Output I	Interval (mins)	1

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

Synthetic Rainfall Details

Return Period (years) FSR M5-60 (mm) 16.500 Cv (Summer) 0.750 Return Period (years) 5 Ratio R 0.279 Cv (Winter) 0.840 Region Scotland and Ireland Profile Type Summer Storm Duration (mins) 30

TOBIN Consulting Engineers		Page 10
Block 10-3		
Blanchardstown Corporate Park		
Dublin 15		Micro
Date 07/02/2022 15:52	Designed by patrick.fanning	
File 11162_DRAINAGEMODEL_20210723.MDX	Checked by	Drainage
Micro Drainage	Network 2018.1.1	

Online Controls for Storm

Hydro-Brake® Optimum Manhole: 7, DS/PN: 1.007, Volume (m³): 3.8

Unit Reference MD-SHE-0101-6100-2044-6100 Sump Available Yes 2.044 Design Head (m) Diameter (mm) 101 Design Flow (1/s) 6.1 Invert Level (m) 51.256 Flush-Flo™ Calculated Minimum Outlet Pipe Diameter (mm) 150 Objective Minimise upstream storage Suggested Manhole Diameter (mm) 1200 Application Surface

Control Points	Head (m)	Flow (1/s)	Control Points	Head (m)	Flow (1/s)
Design Point (Calculated)	2.044	6.1	Kick-Flo®	0.904	4.2
Flush-Flo™	0.440	5.3	Mean Flow over Head Range	_	4.9

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (1/s)	Depth (m)	Flow $(1/s)$	Depth (m)	Flow (1/s)						
0.100	3.3	0.600	5.2	1.600	5.4	2.600	6.8	5.000	9.3	7.500	11.3
0.200	4.7	0.800	4.7	1.800	5.7	3.000	7.3	5.500	9.7	8.000	11.6
0.300	5.1	1.000	4.4	2.000	6.0	3.500	7.8	6.000	10.1	8.500	12.0
0.400	5.2	1.200	4.8	2.200	6.3	4.000	8.4	6.500	10.5	9.000	12.3
0.500	5.2	1.400	5.1	2.400	6.6	4.500	8.8	7.000	10.9	9.500	12.6

TOBIN Consulting Engineers		Page 11
Block 10-3		
Blanchardstown Corporate Park		
Dublin 15		Micro
Date 07/02/2022 15:52	Designed by patrick.fanning	
File 11162_DRAINAGEMODEL_20210723.MDX	Checked by	Drainage
Micro Drainage	Network 2018.1.1	

Storage Structures for Storm

Tank or Pond Manhole: 7, DS/PN: 1.007

Invert Level (m) 51.256

Depth (m) Area (m²) Depth (m) Area (m²) Depth (m) Area (m²)
0.000 240.0 1.000 240.0 1.001 0.0

TOBIN Consulting Engineers		Page 12
Block 10-3		
Blanchardstown Corporate Park		
Dublin 15		Micro
Date 07/02/2022 15:52	Designed by patrick.fanning	Drainage
File 11162_DRAINAGEMODEL_20210723.MDX	Checked by	Dialilade
Micro Drainage	Network 2018.1.1	

Summary of Critical Results by Maximum Level (Rank 1) for Storm

Simulation Criteria

Areal Reduction Factor 1.000 Manhole Headloss Coeff (Global) 0.500 MADD Factor * 10m³/ha Storage 2.000

Hot Start (mins) 0 Foul Sewage per hectare (1/s) 0.000 Inlet Coefficient 0.800

Hot Start Level (mm) 0 Additional Flow - % of Total Flow 20.000 Flow per Person per Day (1/per/day) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR M5-60 (mm) 16.400 Cv (Summer) 0.750 Region Scotland and Ireland Ratio R 0.279 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF
Analysis Timestep 2.5 Second Increment (Extended) Inertia Status OFF
DTS Status

Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 Return Period(s) (years) 1, 30, 100 Climate Change (%) 0, 0, 0

Water Surcharged Flooded Pipe
US/MH Return Climate First (X) First (Y) First (Z) Overflow Level Depth Volume Flow / Overflow Flow Level
PN Name Storm Period Change Surcharge Flood Overflow Act. (m) (m) (m³) Cap. (1/s) Status Exceeded

TOBIN Consulting Engineers		Page 13
Block 10-3		
Blanchardstown Corporate Park		
Dublin 15		Micro
Date 07/02/2022 15:52	Designed by patrick.fanning	
File 11162_DRAINAGEMODEL_20210723.MDX	Checked by	Drainage
Micro Drainage	Network 2018.1.1	

Summary of Critical Results by Maximum Level (Rank 1) for Storm

									Water	Surcharged	Flooded			Pipe
	US/MH		Return	${\tt Climate}$	First (X)	First (Y)	First (Z)	Overflow	Level	Depth	Volume	Flow /	Overflow	Flow
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)	(m)	(m³)	Cap.	(1/s)	(1/s)
1.000	1	15 Winter	100	+0%	30/15 Summer				53.018	0.638	0.000	0.49		15.5
1.001	2	15 Winter	100	+0%	30/15 Summer	•			52.991	0.682	0.000	1.03		34.0
1.002	3	15 Winter	100	+0%	30/15 Summer	•			52.753	0.664	0.000	1.47		43.8
1.003	4	480 Winter	100	+0%	30/15 Summer	•			52.655	0.624	0.000	0.33		10.7
2.000	5	480 Winter	100	+0%	100/15 Summer				52.652	0.192	0.000	0.16		5.6
1.004	5	480 Winter	100	+0%	30/15 Summer	•			52.650	0.772	0.000	0.22		23.9
1.005	7	480 Winter	100	+0%	30/15 Summer	•			52.647	0.943	0.000	0.29		25.6
3.000	6	480 Winter	100	+0%	100/120 Winter	•			52.646	0.546	0.000	0.09		2.9
1.006	6	480 Winter	100	+0%	30/15 Summer	•			52.645	0.982	0.000	0.35		29.3
1.007	7	480 Winter	100	+0%	30/30 Summer	•			52.643	1.012	0.000	0.03		5.2
1.008	12	2880 Summer	30	+0%					51.053	-0.321	0.000	0.05		5.2

	US/MH		Level
PN	Name	Status	Exceeded
1.000	1	SURCHARGED	
1.001	2	SURCHARGED	
1.002	3	SURCHARGED	
1.003	4	SURCHARGED	
2.000	5	SURCHARGED	
1.004	5	SURCHARGED	
1.005	7	SURCHARGED	
(91982 -	2018 Innov	yyze

TOBIN Consulting Engineers		Page 14
Block 10-3		
Blanchardstown Corporate Park		
Dublin 15		Micro
Date 07/02/2022 15:52	Designed by patrick.fanning	Drainage
File 11162_DRAINAGEMODEL_20210723.MDX	Checked by	Dialilade
Micro Drainage	Network 2018.1.1	

Summary of Critical Results by Maximum Level (Rank 1) for Storm

	US/MH		Level
PN	Name	Status	Exceeded
3.000	6	SURCHARGED	
1.006	6	SURCHARGED	
1.007	7	SURCHARGED	
1.008	12	OK	

TOBIN Consulting Engineers		Page 1
Block 10-3		
Blanchardstown Corporate Park		
Dublin 15		Micro
Date 04/02/2022 17:21	Designed by patrick.fanning	Drainage
File 11162_TANKSIZING_P01.SRCX	Checked by	Dialilade
Micro Drainage	Source Control 2018.1.1	

Summary of Results for 5 year Return Period (+20%)

Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status	
15	min	Summer	0.198	0.198	5.9	47.5	O K
30	min	Summer	0.262	0.262	6.1	62.9	O K
60	min	Summer	0.326	0.326	6.1	78.3	O K
120	min	Summer	0.379	0.379	6.1	90.8	O K
180	min	Summer	0.401	0.401	6.1	96.3	O K
240	min	Summer	0.413	0.413	6.1	99.2	O K
360	min	Summer	0.421	0.421	6.1	101.1	O K
480	min	Summer	0.418	0.418	6.1	100.4	O K
600	min	Summer	0.410	0.410	6.1	98.4	O K
720	min	Summer	0.398	0.398	6.1	95.6	O K
960	min	Summer	0.372	0.372	6.1	89.2	O K
1440	min	Summer	0.316	0.316	6.1	75.8	O K
2160	min	Summer	0.245	0.245	6.1	58.8	O K
2880	min	Summer	0.194	0.194	5.9	46.5	O K
4320	min	Summer	0.136	0.136	5.5	32.7	O K
5760	min	Summer	0.116	0.116	4.8	27.8	O K
7200	min	Summer	0.103	0.103	4.2	24.7	O K
8640	min	Summer	0.094	0.094	3.8	22.6	O K
10080	min	Summer	0.088	0.088	3.4	21.1	O K
15	min	Winter	0.223	0.223	6.0	53.5	O K
30	min	Winter	0.296	0.296	6.1	71.1	O K

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	45.522	0.0	51.1	24
30	min	Summer	30.914	0.0	69.8	37
60	min	Summer	20.277	0.0	92.5	64
120	min	Summer	13.043	0.0	119.1	116
180	min	Summer	10.022	0.0	137.4	148
240	min	Summer	8.301	0.0	151.8	182
360	min	Summer	6.356	0.0	174.4	252
480	min	Summer	5.255	0.0	192.3	322
600	min	Summer	4.532	0.0	207.3	390
720	min	Summer	4.016	0.0	220.5	458
960	min	Summer	3.317	0.0	242.8	592
1440	min	Summer	2.533	0.0	278.0	848
2160	min	Summer	1.933	0.0	319.0	1212
2880	min	Summer	1.596	0.0	351.1	1560
4320	min	Summer	1.217	0.0	401.4	2248
5760	min	Summer	1.005	0.0	442.5	2944
7200	min	Summer	0.866	0.0	476.5	3672
8640	min	Summer	0.766	0.0	506.1	4408
10080	min	Summer	0.691	0.0	532.3	5136
15	min	Winter	45.522	0.0	57.4	24
30	min	Winter	30.914	0.0	78.3	37
		©2	1982-20	18 Inno	vyze	

TOBIN Consulting Engineers		Page 2
Block 10-3		
Blanchardstown Corporate Park		
Dublin 15		Micro
Date 04/02/2022 17:21	Designed by patrick.fanning	Drainage
File 11162_TANKSIZING_P01.SRCX	Checked by	Dialilade
Micro Drainage	Source Control 2018.1.1	

Summary of Results for 5 year Return Period (+20%)

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
60	min	Winter	0.371	0.371	6.1	88.9	O K
120	min	Winter	0.435	0.435	6.1	104.4	O K
180	min	Winter	0.459	0.459	6.1	110.2	O K
240	min	Winter	0.470	0.470	6.1	112.8	O K
360	min	Winter	0.474	0.474	6.1	113.8	O K
480	min	Winter	0.464	0.464	6.1	111.3	O K
600	min	Winter	0.446	0.446	6.1	107.0	O K
720	min	Winter	0.424	0.424	6.1	101.8	O K
960	min	Winter	0.376	0.376	6.1	90.2	O K
1440	min	Winter	0.284	0.284	6.1	68.2	O K
2160	min	Winter	0.186	0.186	5.9	44.7	O K
2880	min	Winter	0.135	0.135	5.5	32.4	O K
4320	min	Winter	0.105	0.105	4.3	25.3	O K
5760	min	Winter	0.091	0.091	3.6	21.8	O K
7200	min	Winter	0.082	0.082	3.1	19.8	O K
8640	min	Winter	0.076	0.076	2.8	18.3	O K
10080	min	Winter	0.072	0.072	2.5	17.2	O K

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	m/hr) Volume V		(mins)
				(m³)	(m³)	
60		Winter	20.277	0.0	102 7	64
					103.7	
		Winter	13.043	0.0	133.5	120
180	min	Winter	10.022	0.0	153.9	172
240	min	Winter	8.301	0.0	170.1	196
360	min	Winter	6.356	0.0	195.4	274
480	min	Winter	5.255	0.0	215.4	352
600	min	Winter	4.532	0.0	232.3	426
720	min	Winter	4.016	0.0	247.0	498
960	min	Winter	3.317	0.0	272.0	636
1440	min	Winter	2.533	0.0	311.5	890
2160	min	Winter	1.933	0.0	357.3	1236
2880	min	Winter	1.596	0.0	393.2	1532
4320	min	Winter	1.217	0.0	449.7	2248
5760	min	Winter	1.005	0.0	495.6	2944
7200	min	Winter	0.866	0.0	533.7	3680
8640	min	Winter	0.766	0.0	566.9	4408
10080	min	Winter	0.691	0.0	596.3	5136

TOBIN Consulting Engineers		Page 1
Block 10-3		
Blanchardstown Corporate Park		
Dublin 15		Micro
Date 04/02/2022 17:19	I Daniero al lace canteriale faccións	Drainage
File 11162_TANKSIZING_P01.SRCX	Checked by	Dialitade
Micro Drainage	Source Control 2018 1 1	

Summary of Results for 100 year Return Period (+20%)

Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status	
15	min	Summer	0.390	0.390	6.1	93.7	ОК
30	min	Summer	0.534	0.534	6.1	128.2	O K
60	min	Summer	0.676	0.676	6.1	162.3	O K
120	min	Summer	0.804	0.804	6.1	193.0	O K
180	min	Summer	0.862	0.862	6.1	206.8	O K
240	min	Summer	0.890	0.890	6.1	213.5	O K
360	min	Summer	0.907	0.907	6.1	217.6	O K
480	min	Summer	0.909	0.909	6.1	218.1	O K
600	min	Summer	0.904	0.904	6.1	217.0	O K
720	min	Summer	0.895	0.895	6.1	214.8	O K
960	min	Summer	0.871	0.871	6.1	208.9	O K
1440	min	Summer	0.810	0.810	6.1	194.5	O K
2160	min	Summer	0.708	0.708	6.1	169.8	O K
2880	min	Summer	0.578	0.578	6.1	138.8	O K
4320	min	Summer	0.378	0.378	6.1	90.8	O K
5760	min	Summer	0.253	0.253	6.1	60.7	O K
7200	min	Summer	0.182	0.182	5.9	43.7	O K
8640	min	Summer	0.143	0.143	5.6	34.3	O K
10080	min	Summer	0.126	0.126	5.2	30.2	O K
15	min	Winter	0.440	0.440	6.1	105.5	O K
30	min	Winter	0.603	0.603	6.1	144.7	O K

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	86.896	0.0	98.5	25
30	min	Summer	60.001	0.0	136.3	39
60	min	Summer	38.900	0.0	177.9	68
120	min	Summer	24.521	0.0	224.4	126
180	min	Summer	18.558	0.0	254.8	184
240	min	Summer	15.204	0.0	278.4	242
360	min	Summer	11.445	0.0	314.4	314
480	min	Summer	9.344	0.0	342.3	380
600	min	Summer	7.979	0.0	365.3	444
720	min	Summer	7.011	0.0	385.2	512
960	min	Summer	5.714	0.0	418.6	654
1440	min	Summer	4.283	0.0	470.5	932
2160	min	Summer	3.208	0.0	529.6	1348
2880	min	Summer	2.611	0.0	574.6	1732
4320	min	Summer	1.950	0.0	643.5	2424
5760	min	Summer	1.584	0.0	697.9	3072
7200	min	Summer	1.348	0.0	742.2	3752
8640	min	Summer	1.181	0.0	780.3	4416
10080	min	Summer	1.057	0.0	813.8	5144
15	min	Winter	86.896	0.0	110.4	25
30	min	Winter	60.001	0.0	152.8	39
		©1	1982-20	18 Inno	vyze	

TOBIN Consulting Engineers		Page 2
Block 10-3		
Blanchardstown Corporate Park		
Dublin 15		Micro
Date 04/02/2022 17:19	Designed by patrick.fanning	Drainage
File 11162_TANKSIZING_P01.SRCX	Checked by	Dialilade
Micro Drainage	Source Control 2018.1.1	

Summary of Results for 100 year Return Period (+20%)

Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status	
60	min	Winter	0.764	0.764	6.1	183.3	O K
120	min	Winter	0.912	0.912	6.1	219.0	O K
180	min	Winter	0.983	0.983	6.1	235.9	O K
240	min	Winter	2.379	2.379	9.1	241.5	O K
360	min	Winter	3.177	3.177	10.5	242.3	O K
480	min	Winter	3.372	3.372	10.8	242.5	O K
600	min	Winter	2.886	2.886	10.0	242.0	O K
720	min	Winter	2.161	2.161	8.7	241.2	O K
960	min	Winter	0.981	0.981	6.1	235.5	O K
1440	min	Winter	0.881	0.881	6.1	211.4	O K
2160	min	Winter	0.712	0.712	6.1	171.0	O K
2880	min	Winter	0.499	0.499	6.1	119.8	O K
4320	min	Winter	0.242	0.242	6.0	58.0	O K
5760	min	Winter	0.140	0.140	5.6	33.6	O K
7200	min	Winter	0.117	0.117	4.8	28.1	O K
8640	min	Winter	0.104	0.104	4.3	24.9	O K
10080	min	Winter	0.095	0.095	3.8	22.7	O K

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
60		ration to a second	20 000	0 0	100 2	6.0
		Winter	38.900	0.0	199.3	68
		Winter	24.521	0.0	251.4	124
180	min	Winter	18.558	0.0	285.5	180
240	min	Winter	15.204	0.0	311.9	226
360	min	Winter	11.445	0.0	352.2	274
480	min	Winter	9.344	0.0	383.4	350
600	min	Winter	7.979	0.0	409.3	430
720	min	Winter	7.011	0.0	431.5	514
960	min	Winter	5.714	0.0	468.9	704
1440	min	Winter	4.283	0.0	527.0	1010
2160	min	Winter	3.208	0.0	593.2	1456
2880	min	Winter	2.611	0.0	643.7	1816
4320	min	Winter	1.950	0.0	720.9	2428
5760	min	Winter	1.584	0.0	781.6	3008
7200	min	Winter	1.348	0.0	831.3	3680
8640	min	Winter	1.181	0.0	874.0	4408
10080	min	Winter	1.057	0.0	911.6	5144

Patrick Fanning

Block 10-4 Blanchardstown Corporate Park Dublin D15X98N Ireland

Uisce Éireann Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcaí

Irish Water PO Box 448, South City Delivery Office, Cork City.

www.water.ie

1 July 2021

Re: CDS21003785 pre-connection enquiry - Subject to contract | Contract denied Connection for Housing Development of 39 units at Ardclough Road, Celbridge, Kildare

Dear Sir/Madam,

Irish Water has reviewed your pre-connection enquiry in relation to a Water & Wastewater connection at Ardclough Road, Celbridge, Kildare (the **Premises**). Based upon the details you have provided with your pre-connection enquiry and on our desk top analysis of the capacity currently available in the Irish Water network(s) as assessed by Irish Water, we wish to advise you that your proposed connection to the Irish Water network(s) can be facilitated at this moment in time.

SERVICE	OUTCOME OF PRE-CONNECTION ENQUIRY THIS IS NOT A CONNECTION OFFER. YOU MUST APPLY FOR A CONNECTION(S) TO THE IRISH WATER NETWORK(S) IF YOU WISH TO PROCEED.
Water Connection	Feasible without infrastructure upgrade by Irish Water
Wastewater Connection	Feasible Subject to upgrades
	SITE SPECIFIC COMMENTS
Wastewater Connection	There are significant wastewater capacity constraints in this area and a Drainage Area Plan is currently underway in the Lower Liffey Valley Catchment. Irish Water's Capital Investment Plan projects in the Lower Liffey Valley Catchment (Primrose Hill Pumping Station Project and Castletown Rising Main Project) will provide strategic solutions to the overall capacity constraints. The projects are currently scheduled to be delivered in Q4 2023 and Q4 2025 (this may be subject to change). Where a connection is proposed in advance of the delivery of strategic solutions in this area, Irish water are willing to review Storm Sewer Separation proposals from the Abbey Farm Pump Station catchment, in order to provide additional wastewater capacity. This would require cooperation/agreement from Kildare County Council, as the storm drainage

authority. Storm separation proposals should be on the basis of a factor of 3.0 hydraulic loading reduction during a 1 in 1 year storm event.

The design and construction of the Water & Wastewater pipes and related infrastructure to be installed in this development shall comply with the Irish Water Connections and Developer Services Standard Details and Codes of Practice that are available on the Irish Water website. Irish Water reserves the right to supplement these requirements with Codes of Practice and these will be issued with the connection agreement.

The map included below outlines the current Irish Water infrastructure adjacent to your site:

Reproduced from the Ordnance Survey of Ireland by Permission of the Government. License No. 3-3-34

Whilst every care has been taken in its compilation Irish Water gives this information as to the position of its underground network as a general guide only on the strict understanding that it is based on the best available information provided by each Local Authority in Ireland to Irish Water. Irish Water can assume no responsibility for and give no guarantees, undertakings or warranties concerning the accuracy, completeness or up to date nature of the information provided and does not accept any liability whatsoever arising from any errors or omissions. This information should not be relied upon in the event of excavations or any other works being carried out in the vicinity of the Irish Water underground network. The onus is on the parties carrying out excavations or any other works to ensure the exact

location of the Irish Water underground network is identified prior to excavations or any other works being carried out. Service connection pipes are not generally shown but their presence should be anticipated.

General Notes:

- 1) The initial assessment referred to above is carried out taking into account water demand and wastewater discharge volumes and infrastructure details on the date of the assessment. The availability of capacity may change at any date after this assessment.
- 2) This feedback does not constitute a contract in whole or in part to provide a connection to any Irish Water infrastructure. All feasibility assessments are subject to the constraints of the Irish Water Capital Investment Plan.
- The feedback provided is subject to a Connection Agreement/contract being signed at a later date.
- 4) A Connection Agreement will be required to commencing the connection works associated with the enquiry this can be applied for at https://www.water.ie/connections/get-connected/
- 5) A Connection Agreement cannot be issued until all statutory approvals are successfully in place.
- 6) Irish Water Connection Policy/ Charges can be found at https://www.water.ie/connections/information/connection-charges/
- 7) Please note the Confirmation of Feasibility does not extend to your fire flow requirements.
- 8) Irish Water is not responsible for the management or disposal of storm water or ground waters. You are advised to contact the relevant Local Authority to discuss the management or disposal of proposed storm water or ground water discharges
- 9) To access Irish Water Maps email datarequests@water.ie
- 10) All works to the Irish Water infrastructure, including works in the Public Space, shall have to be carried out by Irish Water.

If you have any further questions, please contact Fionán Ginty from the design team on 01 89 25734 087 1496032 or email fginty @water.ie For further information, visit www.water.ie/connections.

Yours sincerely,

Gronne Haceis

Yvonne Harris

Head of Customer Operations

Appendix E – Site Investigation Report

S.I. Ltd Contract No: 5871

Client: Kildare County Council

Engineer: Tobin Consulting Engineers

Contractor: Site Investigations Ltd

Ardclough Road, Celbridge, Co. Kildare Site Investigation Report

Prepared by:
Stephen Letch

Issue Date:	30/07/2021
Status	Final
Revision	1

Appendix 1 Cable Percussive Borehole Logs

Contra		Cable Percussio	n Bo	orel	nole	Lo	g		Borehole N BH01											
Contrac	ct:	Ardclough Road	Easting	g:	696609	9.491		Date Started:	13/07	7/2021										
Locatio	n:	Celbridge, Co. Kildare	Northin	ıg:	731632	2.362		Date Completed:	: 13/07/2021											
Client:		Kildare County Council	Elevati	on:	53.70				O'Toole											
Engine	er:	Tobin Consulting Engineers	1	Borehole Diameter:		200mm		Status:	FINA	L										
Depti		Stratum Description	Legend		(mOD)			and Insitu Tes		Water Strike	Backfi									
Scale		MADE GROUND: grey brown silty sandy gravel with high cobble and boulder content and some timber and red brick fragments.		53.5 -	Depth	Depth	Type	Result		Ottike										
- - - -	0.80	Brown sandy slightly gravelly silty CLAY.		53.0 — -	52.90	52.90	- - - 52.90	52.90		52.90	52.90		52.90	52.90						
1.0 —	1.00	Firm grey slightly sandy gravelly silty CLAY with medium cobble content.		52.5 — - - -	52.70	1.00	B C	JOT14 N=14 (2,2/3,												
2.0 —	1.70	Stiff black slightly sandy gravelly silty CLAY with high cobble content.		- 52.0 — - - -	52.00	2.00	С	50 (3,3/50 155mm) for))											
2.5 —	2.30 2.40	Obstruction - possible boulders. End of Borehole at 2.40m		51.5 - - - -	51.40	2.40	С	50 (25 fo 5mm/50 for												
3.0 —				51.0 — - -	-															
3.5				50.5 -	-															
- - -				50.0 — -	-															
4.0 —				49.5 –	-															
4.5 —				49.0 —																
		Chiselling: Water Strikes: Water Details:	Install	lation:	F	Backfill:		Remarks:		Legend:										
			From: To			То: Тур		orehole terminated obstruction.	d due	B: Bulk D: Disturb U: Undistr ES: Envir W: Water C: Cone S S: Split sp	urbed onmenta SPT									

Contra		Cable Percussion	n Bo	orel	nole	Lo	g		В	orehole		
Contrac	ct:	Ardclough Road	Easting	g:	696579	9.848		Date Started:	08/07	7/2021		
Locatio	n:	Celbridge, Co. Kildare	Northir	ıg:	731601	1.659		Date Completed:	08/07	7/2021		
Client:		Kildare County Council	Elevati	on:	53.47			Drilled By:	J. O'Toole			
Engine	er:	Tobin Consulting Engineers	Boreho		200mm State		Status:	FINA	L			
Deptl		Stratum Description	Legend	Level	(mOD)		mples	and Insitu Tes		Water	Backfill	
Scale		TOPSOIL.		Scale		Depth	Туре	Result		Strike		
	0.10	Brown sandy slightly gravelly silty CLAY.	X - X	-	53.37							
- 0.5 — - -	0.40	Firm grey slightly sandy gravelly silty CLAY with medium cobble content.		53.0 — - -	53.07							
1.0 —				52.5 — - -	-	1.00 1.00	B C	JOT01 N=12 (2,2/2,				
- 1.5 —	1.40	Black slightly sandy gravelly silty CLAY with high cobble content.		52.0 —	52.07							
-	1.70 1.80	Obstruction - possible boulders. End of Borehole at 1.80m	0,00	-	51.77 51.67	1.80	С	50 (25 fo				
2.0 —				51.5 - - -	-				,			
2.5 — —				51.0 	-							
3.0 —				50.5 —	-							
3.5 —				50.0 —	-							
4.0 —				- 49.5 –	-							
4.5				49.0	- -							
- - -				- - -	-							
		Chiselling: Water Strikes: Water Details: From: To: Time: Strike: Rose: Depth Sealed Date: Hole Depth: Water Details: 1.70 1.80 01:30 1.50 1.30 NS 08/07 1.80 1.3	Install From: To		e: From:	Backfill: Fo: Typ .80 Arisi		Remarks: forehole terminate to obstruction.		Legend: B: Bulk D: Disturb U: Undistr ES: Envir W: Water C: Cone S S: Split sp	urbed onmental SPT	

Contra		Cable Percussio	n Bo	orel	nole	Lo	g		В	No: 3	
Contra	ct:	Ardclough Road	Easting	j:	696567	7.126		Date Started:	08/07	7/2021	
Locatio	n:	Celbridge, Co. Kildare	Northin	ıg:	731565	5.666		Date Completed: 08/07		08/07/2021	
Client:		Kildare County Council	Elevati	on:	53.47			Drilled By:	J. O'	ГооІе	
Engine	er:	Tobin Consulting Engineers	Boreho		200mm	1		Status:	FINA	L	
Dept		Stratum Description	Legend	Level	` '			and Insitu Tes		Water Strike	Backfill
Scale	Depth 0.10	TOPSOIL.				Depth	Туре	Result		Strike	
_	0.10	Brown sandy slightly gravelly silty CLAY.	X - X - X - X - X - X - X - X - X - X -	-	53.37						
0.5 — - -	0.60	Grey slightly sandy gravelly silty CLAY with medium cobble content.	X X	53.0 — - -	52.87						
1.0 	1.10	Black slightly sandy gravelly silty CLAY with high	X 0 X 0 X	52.5 — -	52.37	1.00 1.00	B C	JOT02 50 (2,3/50) for		
_	1.30	cobble content. Obstruction - possible boulders.	**************************************	-	52.17			125mm			
1.5 —	1.40	End of Borehole at 1.40m	000_	52.0 —	52.07	1.40	С	50 (25 fo 5mm/50 for			
- - -				-	_						
2.0 —				51.5 — -	-						
- 2.5 —				51.0 —	-						
- - -				-	-						
3.0 —				50.5 —	-						
				50.0 —							
3.5 — — —				-	-						
4.0 —				- 49.5 —	_						
_				- -	-						
4.5 —				49.0 — -	-						
-				- -							
		Chiselling: Water Strikes: Water Details:	Install	ation:		Backfill:		Remarks:		Legend:	
		From: To: Time: Strike: Rose: Depth Sealed Date: Hole Depth: Water Depth: 1.30 1.40 01:30 1.20 1.00 NS 08/07 1.40 1	From: To	o: Pipe		To: Typ 1.40 Aris		orehole terminate o obstruction.	d due	B: Bulk D: Disturb U: Undistr ES: Envir W: Water C: Cone S S: Split sp	urbed onmental

Contra		Cable Percussio	n Bo	orel	nole	Lo	g		Borehole No: BH04		
Contrac	ct:	Ardclough Road	Easting	g:	696562	2.860		Date Started:	08/07	7/2021	
Locatio	n:	Celbridge, Co. Kildare	Northin	ng:	731533	3.252		Date Completed:	08/07/2021		
Client:		Kildare County Council	Elevati	on:	53.47			Drilled By: J. O		J. O'Toole	
Engine	er:	Tobin Consulting Engineers	Boreho		200mn	n		Status:	FINA	L	
Depth		Stratum Description	Legend	Level	(mOD)			and Insitu Tes		Water	Backfill
Scale	Depth 0.10	TOPSOIL.		X//XX//		Depth	Туре	Result		Strike	
- 0.5 -	0.10	Brown sandy slightly gravelly silty CLAY.	X - X X - X X - X X - X X - X	- - 53.0 —	53.37						
0.5 —	0.70	Grey slightly sandy gravelly silty CLAY with medium	X - X X - X X - X	-	52.77						
1.0 —	0.90	cobble content. Black slightly sandy gravelly silty CLAY with high cobble content.	0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X	52.5 - -	52.57	1.00	B C	JOT03 50 (5,7/50 100mm) for		
1.5 —	1.30 1.40	Obstruction - possible boulders. End of Borehole at 1.40m	00	52.0 —	52.17 52.07	1.40	С	50 (25 fo 5mm/50 for	or		
- - -				- - -	-						
2.0 —				51.5 - -	-						
2.5 —				51.0 —	-						
3.0 —				- - 50.5 -	-						
- - - -				- - -							
3.5 —				50.0 —							
4.0 —				- 49.5 —	-						
				- -							
4.5 —				49.0 — -	-						
_				-	-						
		Chiselling: Water Strikes: Water Details: From: To: Time: Strike: Rose: Depth Sealed Date: Depth: Depth: Water Depth: Depth: Depth: Depth:		lation: o: Pipe	e: From:			Remarks: forehole terminate o obstruction.		Legend: B: Bulk D: Disturb U: Undistr ES: Envir W: Water C: Cone S S: Split sp	urbed onmental

Contra		Cable Percussio	n Borehole Log							Borehole No: BH05		
Contra	ct:	Ardclough Road	Easting	g:	696548	3.949		Date Started:	09/07	7/2021		
Locatio	n:	Celbridge, Co. Kildare	Northin	ng:	731510.656			Date Completed:	09/07/2021			
Client:		Kildare County Council	Elevati	on:	53.54			Drilled By:	J. O'Toole			
Engine	er:	Tobin Consulting Engineers	Boreho		200mn	n		Status:	FINA	L		
Dept		Stratum Description	Legend				and Insitu Tes		Water Strike	Backfil		
Scale	Depth	TOPSOIL.		Scale 53.5 -	Depth	Depth	Туре	Result		Ounto		
-	0.20	Brown sandy slightly gravelly silty CLAY.	X X X	-	53.34							
0.5 —	0.60	Grey slightly sandy gravelly silty CLAY with medium cobble content.	X - X X	53.0 —	52.94							
- 1.0 — -	0.90	Stiff black slightly sandy gravelly silty CLAY with high cobble content.		- 52.5 —	52.64	1.00	ВС	JOT04 N=50 (3,3/5 250mm	0 for			
- 1.5 — -	1.40 1.50	Obstruction - possible boulders. End of Borehole at 1.50m	× × · · · · · · · · · · · · · · · · · ·	52.0 —	52.14 52.04	1.50	С	50 (25 fo 5mm/50 for	or 5mm)			
2.0 —				- - 51.5 -	-							
- - 2.5 —				- - 51.0 —	-							
- - 3.0 —				- - 50.5 —	-							
- - -				-	-							
3.5 —				50.0 —	-							
- 4.0 — - -				49.5 —								
- 4.5 — -				49.0								
- - -				-	-							
		Chiselling: Water Strikes: Water Details:	Instal	lation:		Backfill:		Remarks:		Legend:		
			From: To	o: Pipe		To: Type		orehole terminate o obstruction.	d due	B: Bulk D: Disturb U: Undistr ES: Envir W: Water C: Cone S S: Split sp	urbed onmental SPT	

Contra		Cable Percussio	n Bo	orel		Borehole No: BH06							
Contrac	ct:	Ardclough Road	Easting	g:	696524	4.294		Date Started:	09/07	09/07/2021			
Locatio	n:	Celbridge, Co. Kildare	Northin	ıg:	731519	9.011		Date Completed:	09/07	09/07/2021			
Client:		Kildare County Council	Elevati	on:	53.50			Drilled By:	J. O'	J. O'Toole			
Engine	er:	Tobin Consulting Engineers	Boreho		200mm		Status:	FINA	L				
Deptl		Stratum Description	Legend		(mOD)			and Insitu Tes		Water Strike	Backfill		
Scale	Depth 0.10	TOPSOIL. Brown sandy slightly gravelly silty CLAY.	X//XX//				Depth 53.40	Depth	Туре	Result		Strike	
-		Brown sailuy siigniiy graveliy siity CLAT.	X	-	-								
0.5 —			X	53.0 —									
-			X—XX	-									
-	0.80	Grey slightly sandy gravelly silty CLAY with medium cobble content.	X X	-	52.70								
1.0	1.10		0 × 0 ×	52.5 -	52.40	1.00 1.00	B C	JOT05 N=22 (2,3/2					
_	1.10	Stiff black slightly sandy gravelly silty CLAY with high cobble content.	0 X	-				10mm)					
- 1.5 —	1.50		×	52.0 —	52.00								
1.5	1.60	Obstruction - possible boulders. End of Borehole at 1.60m	000	-	51.90	1.60	С	50 (25 fo 5mm/50 for	or 5mm)				
_				-					,				
2.0 —				51.5 -	-								
-				-]								
-													
2.5 —				51.0 —									
-				-									
3.0				50.5 -									
-				-									
-				-									
3.5 —				50.0 —									
-				-									
4.0 —				49.5 –									
-				-	-								
-				-									
4.5 — —				49.0 — -									
-				-									
-				-									
		Chiselling: Water Strikes: Water Details:	Install			Backfill:		Remarks:		Legend: B: Bulk			
		From: To: Time: Strike: Rose: Depth Sealed Date: Hole Depth: Water Depth: 1.50 1.60 01:30 1.40 1.10 NS 09/07 1.60 1.1	From: To	o: Pipe				orehole terminate o obstruction.	d due	D: Disturb U: Undist ES: Envir W: Water C: Cone S	urbed onmental		

Contra		Cable Percussio	n Bo	orel	nole	Lo	g		Borehole N BH07		
Contrac	ct:	Ardclough Road	Easting	j :	696506	5.532		Date Started:	09/07	//2021	
Locatio	n:	Celbridge, Co. Kildare	Northin	g:	73153 ²	1.407		Date Completed:	09/07	09/07/2021	
Client:		Kildare County Council	Elevation	on:	53.74			Drilled By:	J. O'	J. O'Toole	
Engine	er:	Tobin Consulting Engineers	Boreho		200mm		Status: FINA		L		
Deptl		Stratum Description	Legend	Level	(mOD)			and Insitu Tes		Water Strike	Backfil
Scale	Depth	TOPSOIL.		Scale	Depth	h Depth	Type Resu			Strike	
- -	0.20	Brown sandy slightly gravelly silty CLAY.	<u> </u>	53.5 -	53.54						
0.5 —				- - 53.0 —		0.50	ES	JOT06	i		
1.0 —		Firm grey slightly sandy gravelly silty CLAY with medium cobble content.		- - - 52.5 —	52.94	1.00 1.00	B C	JOT07 N=11 (1,2/3,			
1.5 — - -	1.40	Stiff black slightly sandy gravelly silty CLAY with high cobble content.		- - - 52.0 —	52.34					_	
2.0 —				- - - 51.5 —	-	2.00	С	50 (3,3/50 125mm			
- - 2.5 -	2.30 2.40	Obstruction - possible boulders. End of Borehole at 2.40m		-	51.44 51.34	2.40	С	50 (25 fo 5mm/50 for			
3.0 —				51.0 — - -							
- - -				50.5 —	-						
3.5 —				50.0 —	-						
4.0 —				- - -	-						
- - - 4.5 —				49.5 - -	-						
- - - -				49.0 —							
		Chiselling: Water Strikes: Water Details: From: To: Time: Strike: Rose: Depth Sealed Date: Depth: Depth: Water Details: 2.30 2.40 01:30 2.10 1.80 NS 09/07 2.40 1.8	Install From: To		e: From:	Backfill: To: Tyl		Remarks: orehole terminate o obstruction.		Legend: B: Bulk D: Disturb U: Undistr ES: Envir W: Water C: Cone S	urbed onmental

Contract No: 5871	Cable Percussio	n Bo	n Borehole Log							No:
Contract:	Ardclough Road	Easting):	696483	3.156		Date Started:	12/07	//2021	
Location:	Celbridge, Co. Kildare	Northin	g:	731545	5.307		Date Completed:	12/07/2021		
Client:	Kildare County Council	Elevation	on:	53.31			Drilled By:	J. O'Toole		
Engineer:	Tobin Consulting Engineers	Boreho Diamet		200mm			Status: FIN		L	
Depth (m)	Stratum Description	Legend.	Level	vel (mOD) Samples and Insitu					Backfill	
Scale Depth	TOPSOIL.		Scale	Depth	Depth	Туре	Result		Strike	
- 0.20	Brown sandy slightly gravelly silty CLAY.	× × × ×	53.0 —	53.11						
0.5 —			- - -		0.50	ES	JOT08	1		
- 0.90 1.0 - 1.10 - 1.20	Grey slightly sandy gravelly silty CLAY with medium cobble content. Obstruction - possible boulders.		52.5 — — —	52.41 52.21 52.11	1.00 1.00 1.20	B C C	JOT09 50 (25 fo 85mm/50	or		
1.5	End of Borehole at 1.20m		52.0 — - -	J2.11	1.20	C	5mm) 50 (25 fo 5mm/50 for	or		
2.0			51.5 — -							
2.5 —			51.0 —							
- - - -			50.5 —							
3.0 —			- - 50.0 —							
3.5 —			- - -							
4.0 —			49.5 — - -							
4.5 —			49.0 —							
- - - -			- 48.5 —							
	Chiselling: Water Strikes: Water Details:	Install	ation:	 	Backfill:		Remarks:		Legend:	
(\$)	Doubt Hale Marker	From: To		: From:	To: Typ .20 Arisi		orehole terminate o obstruction.		B: Bulk D: Disturb U: Undistu ES: Enviro W: Water C: Cone S S: Split sp	urbed onmental SPT

Contra		Cable Percussio	n Bo	orel	nole	Lo	g		В	orehole BH0	
Contrac	ct:	Ardclough Road	Easting	g:	696508.860			Date Started: 12/0		07/2021	
Locatio	n:	Celbridge, Co. Kildare	Northing:		731562.744			Date Completed:	12/07	7/2021	
Client:		Kildare County Council		Elevation:				Drilled By:	J. O'	ГооІе	
Engine	er:	Tobin Consulting Engineers	Consulting Engineers Borehole Diameter: 200mm Status:		Status:	FINA	L				
Depth (m)				Level	(mOD)			and Insitu Tes		Water	Backfill
Scale	Depth	TOPSOIL.	Legend	Scale	Depth	Depth	Туре	Result		Strike	
-	0.20	Brown sandy slightly gravelly silty CLAY.		-	53.30						
-			X-X-X	-							
0.5 —			X—————————————————————————————————————	53.0 — -							
-	0.70	Firm grey slightly sandy gravelly silty CLAY with medium cobble content.	× × ×	-	52.80						
1.0 —			x - 0 - X	52.5 –	-	1.00	В	JOT10)		
-	1.20	Ctiff block climbth, cond., weavally silts OLAV with himb	× 0.5	-	52.30	1.00	С	N=14 (2,2/3,	4,3,4)		
-		Stiff black slightly sandy gravelly silty CLAY with high cobble content.	× × ×	-							
1.5 —	1.60		× 0 × 0 ×	52.0 —	51.90						
_	1.70	Obstruction - possible boulders. End of Borehole at 1.70m	000	-	51.80	1.70	С	50 (25 fo 5mm/50 for			
_				-	_				0111111)		
2.0 —				51.5 – -							
-				-	1						
2.5 —				51.0 —	-						
-				-	-						
-				-							
3.0 —				50.5 -							
-				-							
2.5				-							
3.5 —				50.0 —							
-				-							
4.0 —				49.5 –	1						
-				-	-						
-				-	-						
4.5 — —				49.0 —	-						
-				-							
_				-							
		Chiselling: Water Strikes: Water Details:	Install	ation:	E	Backfill:		Remarks:		Legend:	
		From: To: Time: Strike: Rose: Depth Sealed Date: Hole Depth: Water Depth: 1.60 1.70 01:30 1.30 1.00 NS 12/07 1.70 1	From: To	o: Pipe		To: Typ .70 Arisi		orehole terminate o obstruction.	d due	B: Bulk D: Disturb U: Undist ES: Envir	urbed
6										W: Water C: Cone S S: Split sr	SPT

Contra		Cable Percussion	n Bo	orel	nole	Lo	g		В	orehole BH1		
Contrac	ct:	Ardclough Road	Easting	g:	696536	6.579		Date Started:	12/07	12/07/2021		
Locatio	n:	Celbridge, Co. Kildare	Northin	ng:	731569	9.832		Date Completed:	12/07	7/2021		
Client:		Kildare County Council	Elevati	Elevation:		53.49 Drilled By:		Drilled By:	J. O'Toole			
Engine	er:	Tobin Consulting Engineers	Boreho		200mm	n		Status:	FINAL			
Depth		Stratum Description	Legend	Level			and Insitu Tes		Water Strike	Backfill		
Scale	Depth 0.10	TOPSOIL.		Scale	Depth 53.39	Depth	Туре	Result		Strike		
0.5 —	0.50	Brown sandy slightly gravelly silty CLAY. Firm grey slightly sandy gravelly silty CLAY with medium cobble content.	X - X - X - X - X - X - X - X - X - X -	- - 53.0 —	52.99							
1.0 —				52.5 —	-	1.00 1.00	ВС	JOT11 50 (3,3/50 125mm) for			
1.5 —	1.30 1.40	Obstruction - possible boulders. End of Borehole at 1.40m	0 0	52.0 — -	52.19 52.09	1.40	С	50 (25 fo 5mm/50 for				
2.0 —				51.5 — -	-							
2.5 —				51.0 —	-							
3.0 —				50.5 -	-							
3.5 —				50.0 — -	-							
4.0 —				49.5 —	-							
4.5 —				49.0	-							
				-								
		Chiselling: Water Strikes: Water Details: From: To: Time: Strike: Rose: Depth Sealed Sealed Date: Date: Hole Depth: Water Details: 1.30 1.40 01:30 1.30 1.10 NS 12/07 1.40 1.1		lation: o: Pipe	e: From:	Backfill: To: Typ 1.40 Arisi		Remarks: sorehole terminate o obstruction.		Legend: B: Bulk D: Disturb U: Undisti ES: Enviro W: Water C: Cone S S: Split sp	urbed onmental SPT	

Contra		Cable Percussio	n Bo	orel	nole	Lo	g		В	orehole	
Contrac	ct:	Ardclough Road	Easting	j:	696533.013			Date Started: 13/		7/2021	
Locatio	n:	Celbridge, Co. Kildare	Northin	g:	731589	9.692		Date Completed:	13/07/2021		
Client:		Kildare County Council	Elevation:		53.38					J. O'Toole	
Engine	er:	Tobin Consulting Engineers	Boreho		200mm	n		Status:	FINA	L	
Depth (m)		Stratum Description		Level	(mOD)			and Insitu Tes		Water Strike	Backfill
Scale	Depth 0.10	TOPSOIL.		Scale	Depth 53.28	Depth	Туре	Result		Strike	
	0.10	Brown sandy slightly gravelly silty CLAY.	×-×-×	_	55.26						
-	0.40	Grey slightly sandy gravelly silty CLAY with medium		53.0 —	52.98						
0.5 — —		cobble content.		-	1						
_			× × ·	-							
1.0			× × ×	52.5 — -	-	1.00	В	JOT12	<u>!</u>		
_	1.10	Stiff black slightly sandy gravelly silty CLAY with high	× × ×	-	52.28	1.00	С	50 (2,2/50 100mm	for		
_	1.30 1.40	cobble content. Obstruction - possible boulders.		52.0 —	52.08 51.98	1.40	С	50 (25 fc	or		
1.5 —	1.40	End of Borehole at 1.40m		-	31.90	1.40		5mm/50 for			
				-							
				51.5 -							
2.0 —				-							
-				-	-						
2.5 —				51.0 —							
_				-							
-				50.5 —							
3.0 —				-							
-				=							
_				50.0 —							
3.5 —				-	_						
				-							
-				49.5 -							
4.0 —				=	-						
_				_							
4.5 —				49.0 — -	1						
-				-	-						
				- 48.5 —	-						
				=							
a	1	Chiselling: Water Strikes: Water Details: From: To: Time: Strike: Rose: Depth Sealed Date: Hole Depth: Depth Depth Depth: Depth: Depth: Depth: Depth Depth Depth:	Install From: To		Backfill:		pe: B	Remarks: sorehole terminate		Legend: B: Bulk D: Disturb	ned
(3)		1.30 1.40 01:30 1.20 1.10 NS 13/07 1.40 1.1						o obstruction.		U: Undistr ES: Envir W: Water C: Cone S S: Split sp	urbed onmental SPT

	act No: 71	Cable Percussio	n Bo	orel	nole	Lo	g		В	orehole	
Contra	ct:	Ardclough Road	Easting	j:	696513.205			Date Started: 13/0		07/2021	
Locatio	n:	Celbridge, Co. Kildare	Northin	g:	731584	1.987		Date Completed:	13/07/2021		
Client:		Kildare County Council	Elevation	on:				Drilled By:	J. O'Toole		
Engine	er:	Tobin Consulting Engineers	Boreho		200mm	1		Status:	FINA	NAL	
	h (m)	Stratum Description	Legend	Level	(mOD)			and Insitu Tes		Water	Backfill
Scale	Depth 0.10	TOPSOIL.		Scale	Depth 53.11	Depth	Туре	Result		Strike	
- -	0.10	Brown sandy slightly gravelly silty CLAY.		53.0 —	33.11						
0.5 —	0.50	Grey brown slightly sandy gravelly silty CLAY with medium cobble content.		- - 52.5 —	52.71						
1.0 —	0.90	Firm grey slightly sandy gravelly silty CLAY with high cobble content.		- - -	52.31	1.00 1.00	B C	JOT13 N=12 (2,2/2,			
- - -				52.0 — -					•		
1.5 — - - -				51.5 —							
2.0 —	2.00	Obstruction - possible boulders. End of Borehole at 2.10m		-	51.21 51.11	2.10	С	50 (25 fo			
- - 2.5 —				51.0 — - -					0111111)		
- - -				50.5 —	-						
3.0 —				-							
3.5 —				50.0 — - -							
- - -				49.5 — -	-						
4.0 —				- - 49.0 —							
- 4.5 —					-						
- - -				- 48.5 — -							
			Install		e: From: 7	Backfill:		Remarks:	d due	Legend: B: Bulk D: Disturb	
(2.00 2.10 01:30 1.80 1.50 NS 13/07 2.10 1.5			0.00 2	.10 Arisi	ngs to	o obstruction.		U: Undisto ES: Enviro W: Water C: Cone S S: Split sp	urbed onmental SPT

Appendix 2 Trial Pit Logs and Photographs

	act No: 871		•	Trial Pi	t Log						-	Trial Pit TP0	
Contr	act:	Ardclough Road			Easting:	696580	0.756		Date:		07/0	7/2021	
Locat	ion:	Celbridge, Co. Kilda	are		Northing:	73161	5.780		Excavato	r:	JCB	3CX	
Client	t:	Kildare County Cou	ncil		Elevation:	53.53			Logged B	y:	M. K	aliski	
Engin	neer:	Tobin Consulting Er	ngineers		Dimensions		(0.60)	(1.90	Status:	ıs: F		AL.	
Level	(mbgl)	(LXVVXD) (III).				Legend	Level	(mOD) Samp	les /	Field	Tests	Water
Scale:	Depth	T0000#	Ottatum Descript			Legeria	Scale:	Depth	n: Depth	Ту	ре	Result	Strike
0.5 —	0.60	TOPSOIL. Firm grey brown slightine to coarse. Grave limestone. Firm grey sandy grave boulder content. Sandangular to subrounder angular to subrounder sandangular to subrounder content. Sandangular to subrounder boulder content. Sandangular to subrounder angular to subrounder angular to subrounder	relly silty CLAY with he dis fine to coarse. Good of limestone. Cobbed of limestone (up to add) gravelly silty CLA dis fine to coarse. G	nigh cobble and ravel is fine to bles and boulded 400mm diamed	d low coarse, ers are eter).		53.5 - - - - 53.0 - - - - - - - - - - - - - - - - - - -	52.93 52.13	0.50	ESS B	3	MK13 MK14 MK15	•
2.0 —	4.00	angular to subrounde			eter).		51.5 -	51.63	3				
2.5 —							51.0 —						
3.0 —							50.5 -	-					
3.5 —							50.0 —	-					
		Termination:	Pit Wall Stability:	Groundwater	Rate: Rem	arks:			Key:				
		Obstruction - possible boulders.	Pit walls stable.	1.40 Mediun		uno.			B = D = CBR	Sm: Un=		turbed bed CBR	

	act No: 871		•	Trial Pi	t Log							Trial Pit TP0 2	
Contr	act:	Ardclough Road		Easting:	696550	0.012		Date:		07/0	7/2021		
Locat	ion:	Celbridge, Co. Kilda	are		Northing:	73157	1.860		Excavato	r:	JCB	3CX	
Client	t:	Kildare County Cou	ncil		Elevation:	53.41			Logged B	By:	M. k	Kaliski	
Engin	eer:	Tobin Consulting Er	ngineers		Dimensions (LxWxD) (m	3.80 x	0.60	(1.70	Status:		FINAL		
Level	(mbgl)		Stratum Descript		(EXVIXE) (III	Legend	Level	(mOD) Samp	oles /	Field	d Tests	Water
Scale:	Depth	TOPSOIL.	- Chatam Boompt			Logoria	Scale:	Depth	n: Depth	Ту	ре	Result	Strike
	0.10	Firm brown slightly sa content. Sand is fine subrounded of limest limestone.	to coarse. Gravel is	fine to coarse,	angular to		- - 53.0 —	53.3	0.50	E	S	MK10	
- - - 1.0 —		Firm grey slightly san boulder content. Sand angular to subrounde angular to subrounde	d is fine to coarse. G ed of limestone. Cobb	coarse, ers are		- - 52.5 -	52.81	0.80	В	3	MK11		
- - - 1.5 —		Stiff black slightly sandy slightly gravelly silty CLAY with hig and boulder content. Sand is fine to coarse. Gravel is fine to angular to subrounded of limestone. Cobbles and boulders angular to subrounded of limestone (up to 400mm diameter)	e to coarse, ers are		- - 52.0 —	52.31	1.50	В	MK12		•		
-	1.70	.70 Pit terminated due to boulders. Pit terminated at 1.70m			_	51.71	1						
-							51.5 -						
2.0 —							-						
_							-						
-							51.0 —						
2.5 —							-						
_							-						
3.0 —							50.5 - -	-					
-							50.0 —	-					
3.5 —							-	_					
- - -							49.5 -	-					
		Termination:	Pit Wall Stability:	Groundwater	Rate: Rem	arks:			Key:				
		Obstruction - possible boulders.	1 -				B = D =	Bulk Sma	all dis distur	urbed sturbed bed CBR ental			

	act No: 871		•	Trial Pi	t Log							rial Pit TP0 :	
Contr	act:	Ardclough Road			Easting:	69650	2.777		Date:		07/07	/2021	
Locat	ion:	Celbridge, Co. Kilda	are		Northing:	73154	7.766		Excavato	r:	ЈСВ 3	CX	
Client	::	Kildare County Cou	ncil		Elevation:	53.56			Logged B	y:	M. Ka	liski	
Engin	eer:	Tobin Consulting Er	ngineers		Dimensions (LxWxD) (m		(0.60)	1.90	Status:		FINAL		
Level	(mbgl)		Stratum Descript		(LXVXD) (II	Legend	Level	(mOD) Samp	les /	Field 7	Tests	Water
Scale:	Depth	TORCOIL				3		Depth	: Depth	Ту	pe R	esult	Strike
	0.10	TOPSOIL. Firm grey brown sligh gravel laminas. Sand angular to subrounde	is fine to coarse. Gr	avelly silty CLA avel is fine to c	Y with some	X	53.5 -	53.46	0.50	ES	S N	1K07	
1.0		Firm grey brown slight content. Sand is fine subrounded of limest limestone.	to coarse. Gravel is	angular to		53.0 —	52.96	0.80	В	B N	1K08		
- - -	1.40	Firm grey slightly san Sand is fine to coarse subrounded of limest	e. Gravel is fine to co	0		-	52.36 52.16						
1.5 —		medium boulder cont coarse, angular to su	ntly sandy gravelly silty CLAY with high cobble and er content. Sand is fine to coarse. Gravel is fine to ar to subrounded of limestone. Cobbles and boulders subrounded of limestone (up to 400mm diameter).		52.0 — -	-	1.50	В	3 N	1K09	•		
_	1.90	Pit terminated due to		0		/ 5.20.2 0		51.66	6				
2.0 —			Pit terminated at 1.9	om			51.5 -	-					
2.5 —							51.0 —	-					
3.0 —							50.5 -	-					
3.5 —							50.0 —	-					
			Pit Wall Stability:				-						
		Termination: Obstruction - possible boulders.	Rate: Rem	narks:				Sma Und =	disturk all distu disturbe onmen	rbed ed CBR	:		

	act No: 871			Trial Pit	Log							Trial Pit TP0	
Contr	act:	Ardclough Road		E	asting:	696478	3.065		Date:		(07/07/2021	
Locat	ion:	Celbridge, Co. Kilda	are	N	orthing:	731573	3.702		Exca	vator:	Τ,	JCB 3CX	
Client	t:	Kildare County Cou	ncil	E	levation:	53.14			Logge	ed By:	: r	M. Kaliski	
Engin	neer:	Tobin Consulting Er	ngineers		imensions .xWxD) (m):	4.20 x	0.60 x	1.70	Statu	s:	F	FINAL	
Level	(mbgl)		Stratum Descript	1.		Legend	Level	(mOD) S	ample	es / F	Field Tests	Water
Scale:	Depth	TOPSOIL.	Otratum Descript	tion		ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ	Scale:	Depth	n: De	pth	Тур	e Result	Strike
1.5 — 2.0 — 3.5 — 3.5 — 3.5 —	1.10	Firm brown very sand content. Sand is fine subrounded of limest limestone. Stiff brown slightly sa boulder content. San angular to subrounde angular to subrounde angular to subrounde the subrounded angular to subrounded.	ndy gravelly silty CL d is fine to coarse. Ced of limestone (up to	fine to coarse, and agular to subround a sub	ble and parse, s are		53.0 — 52.5 — 52.0 — 51.5 — 51.0 — 50.5 — 49.5 — 49.5 —	52.04	0.3 1.4 1.3	00	B B	MK02 MK03	•
		Termination: Obstruction -	Pit Wall Stability:	Groundwater F		rks:	cance	lled di		Key:	Bulk (disturbed	
(possible boulders.		ingress.) = = 8 CBR =	Smal Undi	Il disturbed isturbed CBR onmental	!		

	act No: 871		•	Trial Pit	t Log						Т	rial Pit TP0 :	
Contr	act:	Ardclough Road			Easting:	696530).617		Date:		07/07	/2021	
Locat	ion:	Celbridge, Co. Kilda	are		Northing:	731534	1.629		Excavato	or:	JCB 3	BCX	
Client	t:	Kildare County Cou	ncil		Elevation:	53.55			Logged I	Зу:	M. Ka	ıliski	
Engin	eer:	Tobin Consulting Er	ngineers		Dimensions (LxWxD) (m)	3.60 x	0.60	1.60	Status:		FINAL		
Level	(mbgl)		Stratum Descript		(EXVVID) (III)	Legend	Level	(mOD) Sam	ples /	Field	Tests	Water
Scale:	Depth	TORCOIL	- Cuatam Bosonpt			2090114	Scale:	Depth	n: Depth	Ту	pe F	Result	Strike
0.5 —	0.10	TOPSOIL. Firm brown slightly sa content. Sand is fine subrounded of limest limestone.	to coarse. Gravel is	fine to coarse,	angular to		53.5 - - - - - 53.0 -	53.45	0.50	E	S	ИК04	
- - - 1.0 —		Firm grey brown sligh content. Sand is fine subrounded of limest limestone.	to coarse. Gravel is	angular to		- - -	52.95	1.00	E	3 1	ИК05		
- - - 1.5 —		boulder content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles and boulders are angular to subrounded of limestone (up to 400mm diameter).	coarse, ers are		52.5 - - - -	52.45			в мкое		•		
- - -	1.60	Pit terminated due to boulders. Pit terminated at 1.60m			52.0 — - -	51.95				WINCO			
2.0 —							51.5 - - -	-					
2.5 —							51.0 — - - -	-					
3.0 —							50.5 — - -	-					
3.5 —							50.0 — - -	-					
			Pit Wall Stability:										
		Termination: Obstruction - possible boulders.		arks: away tes ingress.	t cance	lled du	D = CBR	Bull Sm	k distur all distu disturbe ronmen	ırbed ed CBR			

Appendix 3 Dynamic Probe Logs

Contract No: 5871		Dynan	nic Pı	obe L	og			Probe N	
Contract:	Ardclough Road			Easting:	696613.6	39	Date Started:	07/07/2021	
Location:	Celbridge, Co. Kildare			Northing:	731632.8	54	Logged By:	E. Magee	
Client:	Kildare County Counci	I		Elevation:	53.63		Scale:	1:25	
Engineer:	Tobin Consulting Engi	neers		Rig Type:	Competito	or 130	Sheet No:	Sheet 1 of 1	
Depth (m)	5	10 15		obe 0	25	20	25		Level (mOD)
0 2					25	30	35		53.5 -
2									-
0.5	_								-
	3 3								53.0 —
1.0									-
2	3								52.5 -
	3								-
1.5	6		19						52.0 —
							35	i	-
2.0									-
-									51.5 -
2.5 —									-
2.5									51.0 —
_									-
3.0									-
-									50.5 -
- 3.5 —									-
-									50.0 —
-									-
4.0									49.5 -
-									-
- 4.5 —									-
-									49.0 —
									-
	Termin			Probe Details		Remarks:	<u> </u>		
(\$)	Depth: 1.80m Obs	Reason: struction - possible boulders.	Type: DPH	Mass 50kg	Drop: 500mm]-			

Contract No: 5871		Dy	nar	nic P	obe L	.og			Probe N	
Contract:	Ardclough Ro	pad			Easting:	696609.4	83	Date Started:	07/07/2021	
Location:	Celbridge, Co	o. Kildare			Northing:	731619.0	12	Logged By:	E. Magee	
Client:	Kildare Count	ty Council			Elevation:	53.78		Scale:	1:25	
Engineer:	Tobin Consult	ting Engineers			Rig Type:	Competito	or 130	Sheet No:	Sheet 1 of 1	
Depth (m)		40	4.5		obe	25	20	25		Level (mOD
0	5	10	15		0	25	30	35		(IIIOD
0.5	2									53.5 - - -
1.0	2 2 3									53.0 —
1.5	5	β 9	15							52.5 - -
2.0								35		52.0 —
- - - - 2.5 –										51.5 - -
-										51.0 —
3.0										50.5 -
4.0										50.0 —
- - - - 4.5 –										49.5 - -
- - - -										49.0 —
		Termination:	•		Probe Detail:		Remarks:			
	Depth: 1.70m	Reason: Obstruction - poss boulders.	ible	Type: DPH	Mass 50kg	Drop: 500mm	-			

Contract No: 5871			Dyn	am	ic Pı	obe L	.og			Probe N	
Contract:	Ardclough Ro	ad				Easting:	696586.2	99	Date Started:	07/07/2021	
Location:	Celbridge, Co	. Kildare				Northing:	731604.3	03	Logged By:	E. Magee	
Client:	Kildare Count	ty Council				Elevation:	53.49		Scale:	1:25	
Engineer:	Tobin Consult	ting Engineer	s			Rig Type:	Competito	or 130	Sheet No:	Sheet 1 of 1	
Depth (m)	5	10	1!	_		obe 0	25	30	35		Level (mOD)
1 1 2 2 2 1 1 .0 .5 -	3 4 3 3 3 5	7	14 14 14	15							53.0 — 53.0 — 53.0 — 52.5 — 52.0 — 51.5 — 51.0 —
3.0		7				20			35	;	- - 50.5 - - - -
3.5 —											50.0 — - - -
4.0											49.5 — - - -
4.5 —											49.0 — - - - -
	Danth	Terminatio				Probe Details		Remarks:			
(\$)	Depth: 3.00m	Obstruc	Reason: tion - possible oulders.	;	Type: DPH	Mass 50kg	Drop: 500mm	-			

Contract No: 5871			Dyna	ami	c Pr	obe L	og			Probe N	
Contract:	Ardclough Roa	ad			E	Easting:	696578.5	65	Date Started:	07/07/2021	
Location:	Celbridge, Co	. Kildare			1	Northing:	731599.7	96	Logged By:	E. Magee	
Client:	Kildare Count	y Council			E	Elevation:	53.42		Scale:	1:25	
Engineer:	Tobin Consulti	ing Enginee	rs		F	Rig Type:	Competito	or 130	Sheet No:	Sheet 1 of 1	
Depth (m)	5	10	15		Pro		25	30	35		Level (mOD)
0 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3										53.0 —
1.5	3 5 5	7 7	1	5			27				52.0 — - - - - -
2.0			1	17 17 5 16		22			35		51.5
3.0											- - - 50.5 – -
3.5 —											50.0 — - -
4.0											49.5 - - - - -
4.5 — - - -											49.0 — - - -
											48.5 -
(As)	Depth:	Termination	on: Reason:	Т	ype:	Probe Details Mass	S: Drop:	Remarks:			
(3)	2.50m	Obstruc	ction - possible boulders.		DPH	50kg	500mm	1			

Contract No: 5871		Dyna	mic Pı	obe L	og			Probe N	
Contract:	Ardclough Road			Easting:	696572.1	69	Date Started:	07/07/2021	
Location:	Celbridge, Co. Ki	ildare		Northing:	731581.4	57	Logged By:	E. Magee	
Client:	Kildare County C	council		Elevation:	53.52		Scale:	1:25	
Engineer:	Tobin Consulting	Engineers		Rig Type:	Competito	or 130	Sheet No:	Sheet 1 of 1	
Depth (m)	5	10 15	Pro 2	bbe	25	30	35		Level (mOD)
0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 3 3 3 4 4 4						35		53.0 — 52.5 — 52.0 — 51.5 — 50.5 — 49.5 — 49.0 —
		ermination:		Probe Details		Remarks:			
(\S)	Depth: 1.90m	Reason: Obstruction - possible boulders.	Type: DPH	Mass 50kg	Drop: 500mm	<u> </u> -			

Contract No: 5871	Dyn	amic P	robe L	og		Probe No: DP06
Contract:	Ardclough Road		Easting:	696571.2	25 Date Started	: 07/07/2021
Location:	Celbridge, Co. Kildare		Northing:	731572.0	16 Logged By:	E. Magee
Client:	Kildare County Council		Elevation:	53.56	Scale:	1:25
Engineer:	Tobin Consulting Engineers		Rig Type:	Competito	or 130 Sheet No:	Sheet 1 of 1
Depth (m)			robe	05	20 25	Leve (mOD
0	5 10 1		20	25	30 35	53.5
1	,					
0.5						53.0 -
	5					
	6					
1.0	5					52.5
	4					
	4					
1.5		19			3	5 52.0 -
2.0						51.5
_						
2.5 —						51.0 -
=						31.0
-						
3.0						50.5
=						50.5
-						
3.5						50.0 -
_						50.0 -
-						
4.0						40.5
_						49.5
-						
4.5 —						
_						49.0 -
-						
15	Termination: Depth: Reason:	Type:	Probe Details Mass	s: Drop:	Remarks:	1
(🐒)	1.60m Obstruction - possible		50kg	500mm	-	
	boulders.					

Contract No: 5871		Dynan	nic Pı	obe L	.og			Probe N	
Contract:	Ardclough Road			Easting:	696570.1	53	Date Started:	07/07/2021	
Location:	Celbridge, Co. Kilda	re		Northing:	731567.2	91	Logged By:	E. Magee	
Client:	Kildare County Cour	ncil		Elevation:	53.50		Scale:	1:25	
Engineer:	Tobin Consulting En	gineers		Rig Type:	Competito	or 130	Sheet No:	Sheet 1 of 1	
Depth (m)	5	10 15		obe 0	25	30	35		Level (mOD)
0 1 2 1.0 - 2.0 - 3.5 - 4.0							33 35		53.0 — 53.0 — 53.0 — 52.5 — 52.0 — 51.5 — 51.0 — 50.5 — 49.5 — 49.5 —
4.5 —									49.0 —
13	Term Depth:	nination: Reason:	Type:	Probe Detail Mass	s: Drop:	Remarks	:		
		bstruction - possible boulders.	DPH	50kg	500mm				

Contract No: 5871		Dyı	nan	nic P	robe L	.og			Probe N	
Contract:	Ardclough Roa	ad			Easting:	696569.9	00	Date Started:	07/07/2021	
Location:	Celbridge, Co	. Kildare			Northing:	731559.6	12	Logged By:	E. Magee	
Client:	Kildare County	y Council			Elevation:	53.39		Scale:	1:25	
Engineer:	Tobin Consulti	ing Engineers			Rig Type:	Competito	or 130	Sheet No:	Sheet 1 of 1	
Depth (m)	5	10	15		obe	25	30	35		Level (mOD)
0.5	3 3 3 5 4 2 3 3 3 5		16			25		35		53.0 — 53.0 — 52.5 — 52.0 — 51.5 —
2.0										51.5 -
3.0										50.5 - - - - 50.0
4.0										49.5 - - - -
4.5 —										49.0 — - - - - 48.5 —
	<u> </u>	Termination:			Probe Details	s:	Remarks			-
	Depth: 1.50m	Reason: Obstruction - possit boulders.	ole	Type: DPH	Mass 50kg	Drop: 500mm	-			

Contract No: 5871		Dynamic Probe Log								lo: 9
Contract:	Ardclough Ro	ad			Easting:	696567.6	30	Date Started:	07/07/2021	
Location:	Celbridge, Co	o. Kildare			Northing:	731553.0	24	Logged By:	E. Magee	
Client:	Kildare Count	ty Council			Elevation:	53.41		Scale:	1:25	
Engineer:	Tobin Consult	ting Engine	ers		Rig Type:	Competito	or 130	Sheet No:	Sheet 1 of 1	
Depth (m)	5	10	15	Pro 2	be	25	30	35		Level (mOD)
1.5			14					35		53.0 — 53.0 — 52.5 — 52.0 — 51.0 — 50.5 — 49.5 — 49.0 — 49.0 —
										48.5 -
		Terminati			Probe Details		Remarks:	1		
(\S)	Depth: 1.30m	Obstru	Reason: action - possible boulders.	Type: DPH	Mass 50kg	Drop: 500mm	-			

Contract No: 5871		Dy	nar	nic P	robe L		Probe No: DP10			
Contract:	Ardclough Ro	ad			Easting:	696566.2	02	Date Started:	07/07/2021	
Location:	Celbridge, Co	. Kildare			Northing:	731543.4	48	Logged By:	E. Magee	
Client:	Kildare Count	y Council			Elevation:	53.39		Scale:	1:25	
Engineer:	Tobin Consult	ing Engineers			Rig Type:	Competito	or 130	Sheet No:	Sheet 1 of 1	
Depth (m)	5	10	15		obe	25	30	35		Level (mOD)
0 1 2	3 3 3 3 3 3 3 3			-		25				53.0 — 52.5 —
1.5	3 6	8	10	6				35		52.0 —
2.0										51.5 = - - - -
2.5 —										51.0 —
3.0										50.5 - - - -
3.5 —										50.0
4.0										49.5 - - - -
4.5 —										49.0 —
_										48.5 -
(As)	Depth:	Termination: Reason:		Type:	Probe Detail: Mass	s: Drop:	Remarks:			
	1.70m	Obstruction - posiboulders.	sible	DPH	50kg	500mm				

Contract No: 5871		Dynamic Probe Log							
Contract:	Ardclough Road		E	Easting:	696565.3	90	Date Started:	07/07/2021	
Location:	Celbridge, Co. Kil	dare	ı	Northing:	731532.9	57	Logged By:	E. Magee	
Client:	Kildare County Co	ouncil	E	Elevation:	53.53		Scale:	1:25	
Engineer:	Tobin Consulting	Engineers	F	Rig Type:	Competito	or 130	Sheet No:	Sheet 1 of 1	
Depth (m)	5	10 15	Pro		25	30	35		Level (mOD)
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 4 3 2 2 2 2 3 3 5 5 5 5	10 12		22			35		53.0 — 52.5 -
2.0									51.5 · 51.0 -
3.0									50.5
3.5 —									50.0 - 49.5 -
4.5 —									49.0 -
-		ormination:		Proho Detaile		Dagers			
(\$)	Depth:	ermination: Reason: Obstruction - possible boulders.	Type: DPH	Probe Details Mass 50kg	Drop: 500mm	Remarks: -			

Contract No: 5871		Dynan	nic Pr	obe L		Probe No: DP12			
Contract:	Ardclough Road		ı	Easting:	696563.6	11	Date Started:	07/07/2021	
Location:	Celbridge, Co. Kildare		ı	Northing:	731524.22	25	Logged By:	E. Magee	
Client:	Kildare County Council		ı	Elevation:	53.55		Scale:	1:25	
Engineer:	Tobin Consulting Engineers		ı	Rig Type:	Competito	or 130	Sheet No:	Sheet 1 of 1	
Depth (m)				be	-05				Level (mOD
0	5 10	15	2	0	25	30	35		53.5 -
0.5	5 6 6 3 3 2 3 10 10								53.0 - 52.5 -
1.5	5 9 9		17						52.5 -
				20	25				
2.0						30	35		51.5 - - - -
- 2.5 — - - -									51.0 —
3.0									50.5 - -
3.5 —									50.0 —
4.0									- 49.5 - - -
- - 4.5 — - -									- - 49.0 — -
-									
	Termination:			Probe Details	:	Remarks:			-
	Depth: Re 2.10m Obstruction	ason: on - possible ılders.	Type: DPH	Mass 50kg	Drop: 500mm	-			

Contract No: 5871	Dyr	namic P	robe L	Probe Log				
Contract:	Ardclough Road		Easting:	696562.520	Date Started:	07/07/2021		
Location:	Celbridge, Co. Kildare		Northing:	731511.793	Logged By:	E. Magee		
Client:	Kildare County Council		Elevation:	53.59	Scale:	1:25		
Engineer:	Tobin Consulting Engineers		Rig Type:	Competitor 1	Sheet No:	Sheet 1 of 1		
Depth (m)	5 10		robe	25	20 25	Level (mOD		
0.5 - 1.0 - 1.5 - 2.0 -	5 10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	15	20	25	30 35	53.5 - 53.0 - 52.5 - 52.5 - 51.5 -		
2.5					35	51.0 -		
3.5 -						50.5		
4.0						49.5 -		
	Termination: Depth: Reason: 2.40m Obstruction - possib boulders.	Type: DPH	Probe Detail Mass 50kg	s: Re Drop: - 500mm	emarks:			

Contract No: 5871		Dynar	og			Probe N			
Contract:	Ardclough Road		ı	Easting:	696553.0	97 [Date Started:	07/07/2021	
Location:	Celbridge, Co. Kildar	е	ı	Northing:	731508.6	82 L	ogged By:	E. Magee	
Client:	Kildare County Coun	cil	I	Elevation:	53.55	5	Scale:	1:25	
Engineer:	Tobin Consulting Eng	ineers	I	Rig Type:	Competito	or 130	Sheet No:	Sheet 1 of 1	
Depth (m)		40 45	Pro		25	20	25		Level (mOD)
0.5	5 2 4 4 3 3 3 3 3 3 3 8	10 15	2		25	30	35		53.5
2.0							30		51.5 - 51.0 -
3.0									50.5 -
3.5									50.0 —
4.5									49.5 - - - - 49.0 -
- - - -			ı .	201 2 1 1					
	Depth:	nation: Reason:	Type:	Probe Details Mass	Drop:	Remarks:			
		struction - possible boulders.	DPH	50kg	500mm				

Contract No: 5871	Dyna	.og		Probe No: DP15			
Contract:	Ardclough Road		Easting:	696544.708	Date Started:		
Location:	Celbridge, Co. Kildare		Northing:	731509.707	Logged By:	E. Magee	
Client:	Kildare County Council		Elevation:	53.53	1:25		
Engineer:	Tobin Consulting Engineers		Rig Type:	Competitor 130	Sheet No:	Sheet 1 of 1	
Depth (m)	5 10 15		obe	25 30	35	Level (mOD	
1.0 1.5 2.0 2.5 3.5 4.0 4.5		17	20 21 23 21	26	34	53.0 - 52.5 - 52.0 - 51.5 - 51.0 - 50.5 - 50.0 - 50	
			Dark Dari				
	Termination: Depth: Reason: 3.30m Obstruction - possible boulders.	Type:	Probe Details Mass 50kg	S: Remark Drop: - 500mm	SS:		

Contract No: 5871		Dynamic Probe Log								lo: 6
Contract:	Ardclough Roa	d			Easting:	696531.0	65 Dat	te Started:	07/07/2021	
Location:	Celbridge, Co.	Kildare			Northing:	731513.1	24 Log	gged By:	E. Magee	
Client:	Kildare County	Council			Elevation:	53.56	Sca	ale:	1:25	
Engineer:	Tobin Consultin	ng Engineers	5		Rig Type:	Competito	or 130 She	eet No:	Sheet 1 of 1	
Depth (m)		40	45		obe	05		0.5		Level (mOD
0	5	10	15	2	0	25	30	35		53.5 -
0.5	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2									53.0 -
1.0	2									52.5 -
1.5	6	10	13							52.0 —
2.0			13					35		-
-										51.5 -
2.5										51.0 —
3.0										50.5 -
3.5 — - - -										50.0 —
4.0										49.5 - -
- - 4.5 - - -										49.0 —
-										-
(As)	Depth:	Termination R	n: eason:	Type:	Probe Details Mass	s: Drop:	Remarks:			
(§)	1.90m	Obstruct	tion - possible oulders.	DPH	50kg	500mm				

Contract No: 5871	Dynamic Probe Log								Probe No: DP17	
Contract:	Ardclough Road	I		ı	Easting:	696525.5	89	Date Started:	07/07/2021	
Location:	Celbridge, Co. k	Kildare		1	Northing:	731516.1	42	Logged By:	E. Magee	
Client:	Kildare County	Council		1	Elevation:	53.52		Scale:	1:25	
Engineer:	Tobin Consulting	g Engineers		I	Rig Type:	Competito	or 130	Sheet No:	Sheet 1 of 1	
Depth (m)	5	10	15	Pro 2	bbe	25	30	35		Level (mOD)
1.5		Termination:			Probe Details		Remarks:	35		53.0 - 52.5 - 51.5 - 51.0 - 49.5 -
	Depth:	Reaso		Type:	Mass	Drop:	-			
	1.50m	Obstruction - boulde	possible ers.	DPH	50kg	500mm				

Contract No: 5871			Dyna	mic P	robe L		Probe No: DP18			
Contract:	Ardclough Ro	ad			Easting:	696520.9	02	Date Started:	07/07/2021	
Location:	Celbridge, Co	. Kildare			Northing:	731519.4	14	Logged By:	E. Magee	
Client:	Kildare Count	ty Council			Elevation:	53.54		Scale:	1:25	
Engineer:	Tobin Consult	ting Engine	eers		Rig Type:	Competit	or 130	Sheet No:	Sheet 1 of 1	
Depth					obe					Level (mOD)
(m) 0	5	1	0 15		20	25	30	35		53.5 -
	3									-
0.5	2									-
	3 2									53.0 —
	3									-
1.0	3									52.5 -
	4 6									-
	5	7								-
1.5	6		10							52.0 —
	5			17						-
2.0								35	5	51.5 –
										-
-										-
2.5 —										51.0 —
_										-
3.0										-
										50.5 -
										-
3.5 —										50.0 —
_										-
_										-
4.0										49.5 -
_										-
4.5										-
										49.0 —
										-
1		T	4: - m .		Death Diri					-
1	Depth:	Termina	Reason:	Type:	Probe Detail Mass	Drop:	Remarks:	:		
	2.00m	Obstr	ruction - possible boulders.	DPH	50kg	500mm				

Contract No: 5871		Dynamic Probe Log							
Contract:	Ardclough Roa	ad		Easting:	696515.5	25 Date Started:	07/07/2021		
Location:	Celbridge, Co	. Kildare		Northing:	731523.3	59 Logged By:	E. Magee		
Client:	Kildare County	y Council		Elevation:	53.62	Scale:	1:25		
Engineer:	Tobin Consulti	ing Engineers		Rig Type:	Competito	or 130 Sheet No:	Sheet 1 of 1		
Depth (m)	5	10 1	F	robe	25	30 35	Level (mOD		
1.5 — 2.5 — 2.5 — 3.0 —		10		222	25	30 35	53.5 -		
3.5							50.5 -		
4.0							49.5 -		
		Termination:		Probe Details		Remarks:			
(§)	Depth: 1.40m	Reason: Obstruction - possible boulders.	Type: e DPH	Mass 50kg	Drop: 500mm	ļ -			

Contract No: 5871		Dynar	nic Pı	og			Probe N		
Contract:	Ardclough Road			Easting:	696508.4	54	Date Started:	08/07/2021	
Location:	Celbridge, Co. Kildare			Northing:	731526.9	02	Logged By:	E. Magee	
Client:	Kildare County Council			Elevation:	53.71		Scale:	1:25	
Engineer:	Tobin Consulting Engine	eers		Rig Type:	Competito	or 130	Sheet No:	Sheet 1 of 1	
Depth (m)	5 10) 15		obe	25	20	25		Level (mOD)
0	5 10	15	2	0	25	30	35		(IIIOD)
0.5	2 6 6 6 4 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2								53.5 - 53.0 -
	5				25				- 52.5 –
1.5	7 6	12							-
	5 5 3								52.0 — -
2.0	3	11	6				35	;	- 51.5 –
2.5 — — —									- - 51.0 —
3.0									-
-									50.5 - -
3.5 — - - - -									50.0 —
4.0									- 49.5 - -
4.5 —									49.0 —
_									-
	Termina			Probe Details		Remarks:			
(§)	Depth: 2.30m Obstr	Reason: uction - possible boulders.	Type: DPH	Mass 50kg	Drop: 500mm	_			

Contract No: 5871		Dynamic Probe Log								
Contract:	Ardclough Road			Easting:	696502.9	48	Date Started:	08/07/2021		
Location:	Celbridge, Co. Kildar	e		Northing:	731530.5	92	Logged By:	E. Magee		
Client:	Kildare County Coun	cil		Elevation:	53.76		Scale:	1:25		
Engineer:	Tobin Consulting Eng	jineers		Rig Type:	Competito	or 130	Sheet No:	Sheet 1 of 1		
Depth (m)		40		obe	0.5	20	05		Level (mOD)	
0	5	10 15		20	25	30	35		(IIIOD)	
0.5	4 4 3 3 3 4 4	11							53.5 - 53.0 -	
1.0		12	19						- -	
1.5	5		6	23					52.5 - - - -	
	4	13							52.0 —	
2.0						28	35	j		
_									51.5 -	
2.5 —									-	
3.0									51.0 —	
									50.5 -	
3.5 — - - - -									50.0 —	
4.0									49.5 -	
- 4.5 — - -									49.0 –	
		ination:		Probe Details		Remarks				
(\$)	Depth: 2.10m Ob	Reason: ostruction - possible boulders.	Type: DPH	Mass 50kg	Drop: 500mm	<u> </u> -				

Contract No: 5871		Dynamic Probe Log								lo: 2
Contract:	Ardclough Roa	ad			Easting:	696497.7	22	Date Started:	08/07/2021	
Location:	Celbridge, Co.	. Kildare		1	Northing:	731534.0	93	Logged By:	E. Magee	
Client:	Kildare County	y Council			Elevation:	53.70		Scale:	1:25	
Engineer:	Tobin Consulti	ng Engineers			Rig Type:	Competito	or 130	Sheet No:	Sheet 1 of 1	
Depth (m)	5	10	15	Pro 2	obe	25	30	35		Level (mOD)
0.5	2 3 4 4 4 4	9								53.5 - - - - - - 53.0 -
1.5	4	12	15							52.5 - - - - -
2.0	3 5	11			20					52.0 — - -
-					23			35		51.5 — -
2.5										51.0 —
3.0										50.5 —
4.0										50.0 — - -
4.0										49.5 -
4.0										49.0 — -
		Termination:			Probe Details		Remarks:			
(\S)	Depth: 2.20m	Reason: Obstruction - p boulders	ossible	Type: DPH	Mass 50kg	Drop: 500mm	-			

Contract No: 5871		Dynamic Probe Log								lo: 3
Contract:	Ardclough Ro	ad			Easting:	696486.8	69	Date Started:	08/07/2021	
Location:	Celbridge, Co	. Kildare			Northing:	731544.2	10	Logged By:	E. Magee	
Client:	Kildare Count	y Council			Elevation:	53.39		Scale:	1:25	
Engineer:	Tobin Consult	ing Engineers			Rig Type:	Competito	or 130	Sheet No:	Sheet 1 of 1	
Depth (m)	5	10	15		obe	0.5	30	35		Level (mOD)
0.5 - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		12	17	22	25				53.0 — 53.5 — 52.5 — 52.0 — 51.5 —
2.5		11		··		25		35	:	51.0 —
3.0										50.5 - 50.5 -
3.5 — -										50.0 —
4.0										49.5 — - -
4.5 —										49.0 —
-										48.5 –
		Termination:			Probe Details		Remarks:			
	Depth: 2.50m	Rea Obstruction bould	n - possible	Type: DPH	Mass 50kg	Drop: 500mm	<u></u>			

Contract No: 5871		Dynamic Probe Log								
Contract:	Ardclough Road			Easting:	696482.0	70	Date Started:	08/07/2021		
Location:	Celbridge, Co. Kildare	е		Northing:	731542.8	98	Logged By:	E. Magee		
Client:	Kildare County Counc	cil		Elevation:	53.35		Scale:	1:25		
Engineer:	Tobin Consulting Eng	ineers		Rig Type:	Competito	or 130	Sheet No:	Sheet 1 of 1		
Depth (m)	<u> </u>	10 15	Pro 2	obe	25	20	25		Level (mOD)	
0.5	5 2 2 3 3 2 3 2 4 4 5	12			25	30	35		53.0 — 52.5 — 52.0 — 51.5 —	
2.5		14	19 19	20			35		51.0 —	
3.0									50.5 -	
4.0									49.5 - - - - -	
- - 4.5 — - - -									49.0 —	
	Tormi	nation:		Probe Details	,.	Remarks:			<u>-</u>	
	Depth:	Reason: estruction - possible boulders.	Type: DPH	Mass 50kg	Drop: 500mm	remarks:				

Contract No: 5871		Dynamic Probe Log							
Contract:	Ardclough Road			Easting:	696478.1	16	Date Started:	08/07/2021	
Location:	Celbridge, Co. Kildare	;		Northing:	731542.2	49	Logged By:	E. Magee	
Client:	Kildare County Counc	il		Elevation:	53.31	53.31 Scale:		1:25	
Engineer:	Tobin Consulting Engi	neers		Rig Type:	Competito	or 130	Sheet No:	Sheet 1 of 1	
Depth (m)	5	10 15		obe 0	25	30	35		Level (mOD
0 2 2 2 2 1 1.0 1 1.5 -		10							53.0 52.5 52.0
2.5		15	19	21 20			35	5	51.0 - 50.5
3.5 —									50.0 -
4.0									49.5
4.5									49.0 - 48.5
		nation:		Probe Details		Remarks:			
	Depth: 2.70m Ob	Reason: struction - possible boulders.	Type: DPH	Mass 50kg	Drop: 500mm	-			

Contract No: 5871		Dynamic Probe Log							
Contract:	Ardclough Ro	pad		Easting:	696511.7	92	Date Started:	08/07/2021	
Location:	Celbridge, Co	o. Kildare		Northing:	731559.6	86 L	_ogged By:	E. Magee	
Client:	Kildare Count	ty Council		Elevation:	53.54	53.54 Scale:		1:25	
Engineer:	Tobin Consult	ting Engineers		Rig Type:	Competito	or 130	Sheet No:	Sheet 1 of 1	
Depth				obe					Level
(m) 0	5	10 15		20	25	30	35		(mOD) 53.5 -
0.5	4 4 4								53.0 —
1.0	2								- - 52.5 –
0 0	2								-
1.5							35		52.0 — -
2.0									51.5 -
2.5 —									51.0 —
3.0									50.5 —
- 3.5 — - - -									50.0 —
4.0									49.5 – - -
4.5 —									49.0 —
									_
13	Depth:	Termination: Reason:	Type:	Probe Detail:	s: Drop:	Remarks:			
	1.50m	Obstruction - possible boulders.	DPH	50kg	500mm	1			

Contract No: 5871	Dynamic Probe Log								lo: 7
Contract:	Ardclough Road		E	Easting:	696510.8	26	Date Started:	08/07/2021	
Location:	Celbridge, Co. Kildare		1	Northing:	731565.6	80	Logged By:	E. Magee	
Client:	Kildare County Council		E	Elevation:	53.57		Scale:	1:25	
Engineer:	Tobin Consulting Engineer	s	F	Rig Type:	Competito	or 130	Sheet No:	Sheet 1 of 1	
Depth (m)	5 10	15	Pro		25	20	25		Level (mOD
0	3 10	15	20	,	25	30	35		53.5 -
1 2									
0.5	4								,
0.5	5								53.0 -
b	3								
1.0	5								
	9								52.5 -
2	7								
1.5	6								52.0
							35	;	
-									
2.0									51.5 -
-									
- 2.5 —									
-									51.0 —
-									
3.0									50.5 -
-									50.5
-									
3.5 —									50.0 —
-									
4.0									49.5 -
-									
- 4.5 —									
-									49.0 —
-									
						1_			
		leason:	Type:	Probe Details Mass	Drop:	Remarks:			
	1.70m Obstruc	tion - possible oulders.	DPH	50kg	500mm				

Contract No: 5871		Probe N							
Contract:	Ardclough Road		E	Easting:	696509.0	11	Date Started:	08/07/2021	
Location:	Celbridge, Co. Kildare		1	Northing:	731587.3	38	Logged By:	E. Magee	
Client:	Kildare County Council		E	Elevation:	53.11		Scale:	1:25	
Engineer:	Tobin Consulting Engin	eers	F	Rig Type:	Competito	or 130	Sheet No:	Sheet 1 of 1	
Depth (m)	-	10 15	Pro		25	20	25		Level (mOD)
1.0 - 22 - 1	4 3 5 4 4 4 3 3 3 4	15			25	30	35		53.0 — 52.5 — 52.0 — 51.5 — 50.5 — 49.5 —
4.0									49.0 -
- - - -									48.5
(A)	Termina Depth:	ation: Reason:	Type:	Probe Details Mass	Drop:	Remarks:			
		ruction - possible boulders.	DPH	50kg	500mm				

Contract No: 5871		Dynamic Probe Log							
Contract:	Ardclough Ro	ad		Easting:	696516.6	09	Date Started:	08/07/2021	
Location:	Celbridge, Co	. Kildare		Northing:	731588.3	93	Logged By:	E. Magee	
Client:	Kildare Count	y Council		Elevation:	53.24		Scale:	1:25	
Engineer:	Tobin Consult	ing Engineers		Rig Type:	Competito	or 130	Sheet No:	Sheet 1 of 1	
Depth (m)	5	10 15		obe	05	30	35		Level (mOD)
0 1	2 4 5 4		•		25				53.0 —
1.0	3 3 4								52.0 —
2.0	3						35		51.5 - - - -
2.5 —									51.0 — -
3.0									50.5 - - -
3.5 —									50.0 —
4.0									49.5 - - -
4.5 —									49.0 — - -
-									48.5 - -
115	Depth:	Termination: Reason:	Type:	Probe Details Mass	s: Drop:	Remarks:			
(§)	1.80m	Obstruction - possible boulders.	DPH	50kg	500mm	-			

Contract No: 5871		Dynamic Probe Log								
Contract:	Ardclough Road	ı		Easting:	696534.9	69 Date Start	ed: 08/07/20	21		
Location:	Celbridge, Co. k	Kildare		Northing:	731593.8	92 Logged By	y: E. Magee	;		
Client:	Kildare County	Council		Elevation:	53.41	Scale:	1:25			
Engineer:	Tobin Consulting	g Engineers		Rig Type:	Competito	or 130 Sheet No:	Sheet 1 d	of 1		
Depth (m)		10 15		obe	25	20	25	Level (mOD)		
0.5	5 2 2 3 3 2 3 2 3 2 3 2 3 2 3 2	10 13		20	25	30	35	53.0 52.5 52.0		
2.5 -				20			35	51.0 -		
3.0								50.5 -		
3.5								50.0		
4.0								49.5 -		
4.5								49.0 —		
\equiv		Termination:		Probe Details	s:	Remarks:				
	Depth: 2.20m	Reason: Obstruction - possible boulders.	Type: DPH	Mass 50kg	Drop: 500mm	-				

Contract No: 5871	Dynamic Probe Log								lo:
Contract:	Ardclough Roa	d		Easting:	696535.5	10	Date Started:	08/07/2021	
Location:	Celbridge, Co.	Kildare		Northing:	731587.909		Logged By:	E. Magee	
Client:	Kildare County	Council		Elevation:	53.42		Scale:	1:25	
Engineer:	Tobin Consultin	ng Engineers		Rig Type:	Competito	or 130	Sheet No:	Sheet 1 of 1	
Depth (m)	5	10 1		robe	25	30	35		Level (mOD)
0.5 - 1	3 2					Ì			53.0 —
1.0	5								52.5 — - - - -
1.5	4	10					35	;	52.0 —
2.0									51.5 - - - - - 51.0 -
3.0									50.5 -
3.5 —									50.0 —
4.0									49.5 — - - - -
4.5 —									49.0 — - - -
_									48.5 —
	Depth: 1.80m	Termination: Reason: Obstruction - possible boulders.	Type: e DPH	Probe Detail Mass 50kg	Drop: 500mm	Remarks -	:		

Contract No: 5871		Dyr	ami	c Pr	obe L	og			Probe N	
Contract:	Ardclough Ro	ad		E	asting:	696541.02	24	Date Started:	08/07/2021	
Location:	Celbridge, Co	. Kildare		N	lorthing:	731568.3	19	Logged By:	E. Magee	
Client:	Kildare Count	y Council		E	levation:	53.44		Scale:	1:25	
Engineer:	Tobin Consult	ing Engineers		F	Rig Type:	Competito	or 130	Sheet No:	Sheet 1 of 1	
Depth (m)	-	40	15	Pro		25	20	25		Level (mOD
0.5 - 2 1.0 - 2 1.5 2 2.5	5 3 3 4 5 3 2	11	15	20		25	30	35		53.0 - 52.5 - 51.5 -
3.0										50.5 -
3.5 -										50.0
4.0										49.5 -
- 4.5 - - - - -										49.0 - 48.5 -
		Termination:			robe Details		Remarks:			
	Depth: 1.20m	Reason: Obstruction - possib boulders.		Type: DPH	Mass 50kg	Drop: 500mm	-			

Contract No: 5871		Dyna	mic Pı	obe L	og			Probe N	
Contract:	Ardclough Road			Easting:	696532.5	13	Date Started:	08/07/2021	
Location:	Celbridge, Co. K	ildare		Northing:	731566.8	43	Logged By:	E. Magee	
Client:	Kildare County C	Council		Elevation:	53.56		Scale:	1:25	
Engineer:	Tobin Consulting	Engineers		Rig Type:	Competito	or 130	Sheet No:	Sheet 1 of 1	
Depth (m)	5	10 15		obe 0	25	30	35		Level (mOD)
1.5 - 2.0 - 2.5 - 2	2 2 3 3 3 2 2 2 3 3 3 2 2 3 3 3 2 3 3 3 2 3 3 3 3 3 2 3	3 11					35		53.5
3.0									50.5
3.5									50.0 -
4.0									49.5 - 49.0 -
		Fermination:		Probe Details		Remarks:			
	Depth: 1.80m	Reason: Obstruction - possible boulders.	Type: DPH	Mass 50kg	Drop: 500mm	-			

Appendix 4 Foundation Pit Log

Foundation Pits

FP01

Foundation Details:

240mm thick with no underlying Wall: Concrete wall extends to 480mm bgl, foundation. foundation extends 230mm from wall and

0.30m: Firm brown slightly sandy slightly Ground Conditions:

0.00m: MADE GROUND: dark grey medium cobble content and some timber slightly sandy gravelly silty clay with

gravelly silty CLAY with low cobble

SITE INVESTIGATIONS LTD Location:

Ardclough Road

Consultant:

Celbridge, Co. Kildare

Tobin Consulting Engineers

NOT TO SCALE, ALL DISTANCES IN mm Logged by:
M. Kaliski

Excavation Started: Excavation Finished: 07/07/2021 07/07/2021

CONTRACT NUMBER

DEPTH ARE TO THE TOP OF SERVICES

Appendix 5 Geotechnical Laboratory Test Results

Classification Tests in accordance with BS1377: Part 4

Client	Kildare County Council
Site	Ardclough Road, Celbridge
S.I. File No	5871 / 20
Test Lab	Site Investigations Ltd., Carhugar The Grange, 12th Lock Rd., Lucan Co. Dublin. Tel (01) 6108768 Email info@siteinvestigations.ie
Report Date	21st July 2021

Hole ID	Depth	Sample	Lab Ref	Sample	Natural	Liquid	Plastic	Plastic	Min. Dry	Particle	%	Comments	Remarks C=Clay;
		No	No.	Type	Moisture	Limit	Limit	Index	Density	Density	passing		M=Silt Plasticity:
					Content	%	%	%	Mg/m^3	Mg/m^3	425um		L=Low; I=Intermediate;
					%								H =High; V =Very High;
													E=Extremely High
TP01	1.00	MK14	21/923	В	13.6	34	18	16			44.9		CL
TP02	1.50	MK12	21/925	В	13.0	39	20	19			57.4		CI
TP03	1.50	MK09	21/927	В	12.4	43	22	21			46.3		CI
TP04	1.00	MK02	21/928	В	26.0	36	20	16		·	70.3		CI
TP05	1.50	MK06	21/930	В	18.4	38	21	17			43.7		CI

Printed 29/07/2021 Paddy McGonagle
Sheet 1 of 1 Site Investigations Ltd

BS Sieve	Percent	Hydrometer	analysis
size, mm	passing	Diameter, mm	% passing
100	100	0.0630	
90	100	0.0200	
75	100	0.0060	
63	100	0.0020	
50	100		
37.5	100		
28	94.6		
20	89.9		
14	86		
10	81.9		
6.3	75.4		
5.0	74.1		
2.36	65		
2.00	63.5		
1.18	58.3		
0.600	48.8		
0.425	44.9		
0.300	42.1		
0.212	39.2		
0.150	36.3		
0.063	29		

Cobbles, %	0
Gravel, %	37
Sand, %	35
Clay / Silt, %	29

Client:	Kildare County Council	Lab. No:	21/923	Hole ID :	TP 01
Project:	Ardclough Road, Celbridge	Sample No:	MK14	Depth, m:	1.00

	Material description:	sandy gravelly silty CLAY
ſ		Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.
	Remarks:	Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

BS Sieve	Percent	Hydrometer	analysis
size, mm	passing	Diameter, mm	% passing
100	100	0.0630	
90	100	0.0200	
75	100	0.0060	
63	100	0.0020	
50	100		
37.5	100		
28	100		
20	96.9		
14	91.3		
10	87		
6.3	81.5		
5.0	80.1		
2.36	72		
2.00	70.7		
1.18	66.8		
0.600	60.3		
0.425	57.4		
0.300	54.7		
0.212	51.6		
0.150	48.3		
0.063	40		

Cobbles, %	0
Gravel, %	29
Sand, %	31
Clay / Silt, %	40

Client:	Kildare County Council
Project:	Ardclough Road, Celbridge

Lab. No:	21/925
Sample No:	MK12

Hole ID:	TP 02
Depth, m:	1.50

Material description:	slightly sandy slightly grav	velly silt	y CL	ΑY		
Domarks	Soils with clay or silt content	between	15%	- 359	6 can	be
Remarks:						

Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.

Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

BS Sieve	Percent	Hydrometer	analysis
size, mm	passing	Diameter, mm	% passing
100	100	0.0630	
90	100	0.0200	
75	100	0.0060	
63	100	0.0020	
50	100		
37.5	100		
28	100		
20	93.3		
14	86.4		
10	81.4		
6.3	73.9		
5.0	72.2		
2.36	63		
2.00	61.2		
1.18	56.7		
0.600	49.7		
0.425	46.3		
0.300	43.3		
0.212	40.8		
0.150	38.6		
0.063	33		

Cobbles, %	0
Gravel, %	39
Sand, %	28
Clay / Silt, %	33

Client:	Kildare County Council
Project:	Ardclough Road, Celbridge

Lab. No:	21/927	Hole ID :	TP 03
Sample No:	MK09	Depth, m:	1.50

l	Material description :	slightly sandy gravelly silty CLAY
		Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.
	Remarks :	Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

BS Sieve	Percent	Hydrometer	analysis
size, mm	passing	Diameter, mm	% passing
100	100	0.0630	
90	100	0.0200	
75	100	0.0060	
63	100	0.0020	
50	100		
37.5	100		
28	100		
20	100		
14	98.9		
10	97.6		
6.3	96.7		
5.0	96.2		
2.36	93.5		
2.00	92.9		
1.18	86.8		
0.600	77.8		
0.425	70.3		
0.300	60.4		
0.212	49.3		
0.150	40.5		
0.063	25		

Cobbles, %	0
Gravel, %	7
Sand, %	68
Clay / Silt, %	25

21/928 MK02

Client:	Kildare County Council	Lab. No	:	
Project:	Ardclough Road, Celbridge	Sample No	:	

Hole ID:	TP 04
Depth, m:	1.00

ı	Material description:	very sandy slightly gravelly silty CLAY
ı	D ama anlas a	Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.
	Remarks:	Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

BS Sieve	Percent	Hydrometer	analysis
size, mm	passing	Diameter, mm	% passing
100	100	0.0630	
90	100	0.0200	
75	100	0.0060	
63	100	0.0020	
50	100		
37.5	100		
28	100		
20	96		
14	89.5		
10	81.8		
6.3	73.4		
5.0	71.4		
2.36	60.9		
2.00	59.5		
1.18	54.2		
0.600	47.3		
0.425	43.7		
0.300	39.8		
0.212	36.4		
0.150	33.5		
0.063	27		

Cobbles, %	0
Gravel, %	41
Sand, %	33
Clay / Silt, %	27

	Client:	Kildare County Council	
Г	Project:	Ardclough Road, Celbridge	

Lab. No:	21/930
Sample No:	MK06

Hole ID:	TP 05
Depth, m:	1.50

waterial description.	Sails with also as all assets the town as	
Material description :	slightly sandy gravelly silty CLAY	

Remarks:

Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.

Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

California Bearing Ratio (CBR) In accordance with BS1377: Part 4: Method 7

Client	Kildare County Council
Site	Ardclough Road, Celbridge
S.I. File No	5871 / 20
Test Lab	Site Investigations Ltd., Carhugar The Grange, 12th Lock Rd., Lucan Co. Dublin. Tel (01) 6108768 Email info@siteinvestigations.ie
Report Date	21st July 2021

CBR No	Depth (mBGL)	Sample No	Sample Type	Lab Ref	Moisture Content (%)	CBR Value (%)	Location / Remarks
CBR01	0.50	MK16	CBR	21/931	12.9	6.4	
CBR02	0.50	MK17	CBR	21/932	11.5	6.6	
CBR03	0.50	MK18	CBR	21/933	16.1	4.8	
CBR04	0.50	MK19	CBR	21/934	14.9	5.1	
CBR05	0.50	MK20	CBR	21/935	12.1	5.8	

Chemical Testing In accordance with BS 1377: Part 3

Client	Kildare County Council
Site	Ardclough Road, Celbridge
S.I. File No	5871 / 21
Test Lab	Site Investigations Ltd., Carhugar The Grange, 12th Lock Rd., Lucan Co. Dublin. Tel (01) 6108768 Email: info@siteinvestigations.ie
Report Date	21st July 2021

Hole Id	Depth	Sample	Lab Ref	pН	Water Soluble	Water Soluble	Loss on	Chloride	% passing	Remarks
	(mBGL)	No		Value	Sulphate Content	Sulphate Content	Ignition	ion	2mm	
					(2:1 Water-soil	(2:1 Water-soil	(Organic	Content		
					extract) (SO ₃)	extract) (SO ₃)	Content)	(water:soil		
					g/L	%	%	ratio 2:1)		
								%		
TP01	1.00	MK14	21/923	7.96	0.123	0.078			63.5	
TP02	0.80	MK11	21/924	8.26	0.124	0.098			78.5	
TP03	0.80	MK08	21/926	8.41	0.120	0.067			55.8	
TP04	1.00	MK02	21/928	8.35	0.122	0.113			92.9	
TP05	1.00	MK05	21/929	8.44	0.126	0.084			66.7	

_____Paddy McGonagle
Site Investigations Ltd.

Appendix 6 Environmental Laboratory Test Results and Waste Classification Report

eurofins Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 21-25476-1

Initial Date of Issue: 29-Jul-2021

Client Site Investigations Ltd

Client Address: The Grange12th, Lock Road

Lucan Co Dublin IRELAND

Contact(s): Stephen Letch

Project 5871 Ardclough Rd, Celbridge

Quotation No.: Date Received: 23-Jul-2021

Order No.: 42/A/21 **Date Instructed:** 23-Jul-2021

No. of Samples: 5

Turnaround (Wkdays): 5 Results Due: 29-Jul-2021

Date Approved: 29-Jul-2021

Approved By:

Details: Glynn Harvey, Technical Manager

Results - Leachate

Client: Site Investigations Ltd	Chemtest Job No.:				ob No.:	21-25476	21-25476	21-25476	21-25476	21-25476
Quotation No.:		(Chemte	st Sam	ple ID.:	1247003	1247004	1247005	1247006	1247007
Order No.: 42/A/21	Client Sample Ref.:					TP 01	TP 02	TP 03	TP 04	TP 05
			Cli	ent Sam	ple ID.:	MK 13	MK 10	MK 07	MK 01	MK 04
				Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL
				Top De	oth (m):	0.50	0.50	0.50	0.50	0.50
			Bot	tom De	oth (m):	0.50	0.50	0.50	0.50	0.50
				Date Sa	ampled:	19-Jul-2021	19-Jul-2021	19-Jul-2021	19-Jul-2021	19-Jul-2021
Determinand	Accred. SOP Type Units LOD									
Ammonium	U	1220	10:1	mg/l	0.050	0.13	0.081	0.082	0.090	0.11
Ammonium	N	1220	10:1	mg/kg	0.10	1.6	0.98	0.95	0.99	1.2

Results - Soil

Client: Site Investigations Ltd			ntest Jo		21-25476	21-25476	21-25476	21-25476	21-25476
Quotation No.:	(st Sam		1247003	1247004	1247005	1247006	1247007
Order No.: 42/A/21			ոt Samp		TP 01	TP 02	TP 03	TP 04	TP 05
		Clie	ent Sam	ple ID.:	MK 13	MK 10	MK 07	MK 01	MK 04
			Sample	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL
			Top Dep		0.50	0.50	0.50	0.50	0.50
		Bot	tom Dep	oth (m):	0.50	0.50	0.50	0.50	0.50
			Date Sa	mpled:	19-Jul-2021	19-Jul-2021	19-Jul-2021	19-Jul-2021	19-Jul-2021
			Asbest	os Lab:	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD					
ACM Type	U	2192		N/A	-	-	-	-	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected				
Moisture	N	2030	%	0.020	14	16	15	20	11
рН	М	2010		4.0	8.6	7.5	7.0	7.6	7.2
Boron (Hot Water Soluble)	М	2120	mg/kg	0.40	0.56	< 0.40	< 0.40	< 0.40	< 0.40
Sulphur (Elemental)	М	2180	mg/kg	1.0	< 1.0	< 1.0	< 1.0	13	26
Cyanide (Total)	М	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Sulphide (Easily Liberatable)	N	2325	mg/kg	0.50	2.5	0.94	< 0.50	< 0.50	0.70
Sulphate (Total)	М	2430	%	0.010	0.060	0.027	0.037	0.013	0.014
Arsenic	М	2450	mg/kg	1.0	16	10	10	9.0	10
Barium	М	2450	mg/kg	10	58	99	49	38	50
Cadmium	М	2450	mg/kg	0.10	1.2	1.1	1.1	0.79	0.79
Chromium	М	2450	mg/kg	1.0	17	16	13	12	18
Molybdenum	М	2450	mg/kg	2.0	2.1	< 2.0	< 2.0	< 2.0	< 2.0
Antimony	N	2450	mg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Copper	М	2450	mg/kg	0.50	18	12	14	10	11
Mercury	М	2450	mg/kg	0.10	0.11	< 0.10	< 0.10	< 0.10	< 0.10
Nickel	М	2450	mg/kg	0.50	24	17	17	14	20
Lead	М	2450	mg/kg	0.50	30	20	21	17	24
Selenium	М	2450	mg/kg	0.20	0.68	0.51	0.46	0.39	0.45
Zinc	М	2450	mg/kg	0.50	89	78	60	58	68
Chromium (Trivalent)	N	2490	mg/kg	1.0	17	16	13	12	18
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Total Organic Carbon	М	2625	%	0.20	1.3	0.86	0.96	0.76	0.72
Mineral Oil (TPH Calculation)	N	2670	mg/kg	10	< 10	< 10	< 10	< 10	< 10
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	М	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	М	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	М	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C16-C21	М	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	М	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
			0						
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Results - Soil

Client: Site Investigations Ltd			mtest Jo		21-25476	21-25476	21-25476	21-25476	21-25476
Quotation No.:			st Sam		1247003	1247004	1247005	1247006	1247007
Order No.: 42/A/21			nt Samp		TP 01	TP 02	TP 03	TP 04	TP 05
		Cli	ent Sam		MK 13	MK 10	MK 07	MK 01	MK 04
			Sample		SOIL	SOIL	SOIL	SOIL	SOIL
			Top Dep		0.50	0.50	0.50	0.50	0.50
		Bot	tom Dep	oth (m):	0.50	0.50	0.50	0.50	0.50
			Date Sa	mpled:	19-Jul-2021	19-Jul-2021	19-Jul-2021	19-Jul-2021	19-Jul-2021
			Asbest	os Lab:	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD					
Aromatic TPH >C8-C10	M	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	M	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C12-C16	M	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C21-C35	М	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	< 10	< 10	< 10	< 10	< 10
Benzene	М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	М	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	М	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene	М	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	М	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Methyl Tert-Butyl Ether	M	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Naphthalene	M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene	N	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Anthracene	M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Pyrene	M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]anthracene	M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Chrysene	M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[b]fluoranthene	M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene	M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[k]nuorannene Benzo[a]pyrene	M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	N N	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
, ,	M	2800			< 0.10	< 0.10	< 0.10	< 0.10	
Benzo[g,h,i]perylene	N N	2800	mg/kg	0.10					< 0.10
Coronene Total Of 17 DALI's			mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Of 17 PAH's	N	2800	mg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
PCB 28	U	2815	mg/kg	0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
PCB 52	U	2815	mg/kg	0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
PCB 90+101	U	2815	mg/kg	0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
PCB 118	U	2815	mg/kg	0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
PCB 153	U	2815	mg/kg	0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010

Results - Soil

Client: Site Investigations Ltd		Chei	mtest Jo	ob No.:	21-25476	21-25476	21-25476	21-25476	21-25476
Quotation No.:	(Chemte	st Sam	ple ID.:	1247003	1247004	1247005	1247006	1247007
Order No.: 42/A/21		Clie	nt Samp	le Ref.:	TP 01	TP 02	TP 03	TP 04	TP 05
		Cli	ent Sam	ple ID.:	MK 13	MK 10	MK 07	MK 01	MK 04
	Sample Type:		SOIL	SOIL	SOIL	SOIL	SOIL		
	Top Depth (m):			0.50	0.50	0.50	0.50	0.50	
	Bottom Depth (m):			0.50	0.50	0.50	0.50	0.50	
	Date Sampled:		19-Jul-2021	19-Jul-2021	19-Jul-2021	19-Jul-2021	19-Jul-2021		
			Asbest	os Lab:	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD					
PCB 138	U	2815	mg/kg	0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
PCB 180	U	2815	mg/kg	0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Total PCBs (7 Congeners)	U	2815	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Phenols	М	2920	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10

Project: 5871 Ardclough Rd, Celbridge

Project: 5871 Ardclough Rd, Celb								
Chemtest Job No:	21-25476				Landfill \	Naste Acceptanc	e Criteria	
Chemtest Sample ID:	1247003					Limits		
Sample Ref:	TP 01					Stable, Non-		
Sample ID:	MK 13					reactive		
Sample Location:						hazardous	Hazardous	
Top Depth(m):	0.50				Inert Waste	waste in non-	Waste	
Bottom Depth(m):	0.50				Landfill	hazardous	Landfill	
Sampling Date:	19-Jul-2021					Landfill		
Determinand	SOP	Accred.	Units					
Total Organic Carbon	2625	M	%	1.3	3	5	6	
Loss On Ignition	2610	M	%	4.1			10	
Total BTEX	2760	M	mg/kg	< 0.010	6			
Total PCBs (7 Congeners)	2815	M	mg/kg	< 0.10	1			
TPH Total WAC	2670	M	mg/kg	< 10	500			
Total (Of 17) PAH's	2800	N	mg/kg	< 2.0	100			
pH	2010	M		8.6		>6		
Acid Neutralisation Capacity	2015	N	mol/kg	0.0050		To evaluate	To evaluate	
Eluate Analysis		10:1 Eluate		10:1 Eluate	Limit values for compliance leaching to			
			mg/l	mg/kg	using B	ng BS EN 12457 at L/S 10 l/kg		
Arsenic	1455	U	0.0036	0.036	0.5	2	25	
Barium	1455	U	< 0.005	< 0.0005	20	100	300	
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5	
Chromium	1455	U	< 0.0005	< 0.0005	0.5	10	70	
Copper	1455	U	0.0027	0.027	2	50	100	
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2	
Molybdenum	1455	U	0.0070	0.070	0.5	10	30	
Nickel	1455	U	0.0010	0.0099	0.4	10	40	
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50	
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5	
Selenium	1455	U	0.0006	0.0056	0.1	0.5	7	
Zinc	1455	U	0.003	0.025	4	50	200	
Chloride	1220	U	< 1.0	< 10	800	15000	25000	
Fluoride	1220	U	0.42	4.2	10	150	500	
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000	
Total Dissolved Solids	1020	N	65	650	4000	60000	100000	
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-	
Dissolved Organic Carbon	1610	U	24	240	500	800	1000	

Solid Information						
Dry mass of test portion/kg	0.090					
Moisture (%)	14					

Waste Acceptance Criteria

Project: 5871 Ardclough Rd, Celbridge

Project: 5871 Ardclough Rd, Celb							
Chemtest Job No:	21-25476				Landflll \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1247004					Limits	
Sample Ref:	TP 02					Stable, Non-	
Sample ID:	MK 10					reactive	
Sample Location:						hazardous	Hazardous
Top Depth(m):	0.50				Inert Waste	waste in non-	Waste
Bottom Depth(m):	0.50				Landfill	hazardous	Landfill
Sampling Date:	19-Jul-2021					Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	M	%	0.86	3	5	6
Loss On Ignition	2610	M	%	2.6			10
Total BTEX	2760	M	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815	М	mg/kg	< 0.10	1		
TPH Total WAC	2670	М	mg/kg	< 10	500		
Total (Of 17) PAH's	2800	N	mg/kg	< 2.0	100		
pH	2010	М		7.5		>6	
Acid Neutralisation Capacity	2015	N	mol/kg	< 0.0020		To evaluate	To evaluate
Eluate Analysis		10:1 Eluate		10:1 Eluate	Limit values for compliance leaching t		
			mg/l	mg/kg	using B	6 10 l/kg	
Arsenic	1455	U	0.0004	0.0039	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	< 0.0005	< 0.0005	0.5	10	70
Copper	1455	U	0.0006	0.0056	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0027	0.027	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.14	1.4	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	12	120	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	18	180	500	800	1000

Solid Information						
Dry mass of test portion/kg	0.090					
Moisture (%)	16					

Waste Acceptance Criteria

Project: 5871 Ardclough Rd, Celbridge

Project: 58/1 Ardclough Rd, Celb	riage						
Chemtest Job No:	21-25476				Landfill \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1247005					Limits	
Sample Ref:	TP 03					Stable, Non-	
Sample ID:	MK 07					reactive	
Sample Location:						hazardous	Hazardous
Top Depth(m):	0.50				Inert Waste	waste in non-	Waste
Bottom Depth(m):	0.50				Landfill	hazardous	Landfill
Sampling Date:	19-Jul-2021					Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	M	%	0.96	3	5	6
Loss On Ignition	2610	М	%	2.7			10
Total BTEX	2760	М	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815	М	mg/kg	< 0.10	1		
TPH Total WAC	2670	М	mg/kg	< 10	500		
Total (Of 17) PAH's	2800	N	mg/kg	< 2.0	100		
Hq	2010	М	, , ,	7.0		>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.0040		To evaluate	To evaluate
Eluate Analysis		10:1 Eluate		10:1 Eluate	Limit values for compliance leaching to		
•			mg/l	mg/kg	using B	S 10 I/kg	
Arsenic	1455	U	0.0003	0.0029	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	< 0.0005	< 0.0005	0.5	10	70
Copper	1455	U	0.0007	0.0072	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0022	0.022	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.12	1.2	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	7.8	78	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	7.6	76	500	800	1000

Solid Information						
Dry mass of test portion/kg	0.090					
Moisture (%)	15					

Waste Acceptance Criteria

Project: 5871 Ardclough Rd, Celbridge

Project: 5871 Ardclough Rd, Celb							
Chemtest Job No:	21-25476				Landfill \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1247006					Limits	
Sample Ref:	TP 04					Stable, Non-	
Sample ID:	MK 01					reactive	
Sample Location:						hazardous	Hazardous
Top Depth(m):	0.50				Inert Waste	waste in non-	Waste
Bottom Depth(m):	0.50				Landfill	hazardous	Landfill
Sampling Date:	19-Jul-2021					Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	M	%	0.76	3	5	6
Loss On Ignition	2610	М	%	2.6			10
Total BTEX	2760	М	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815	M	mg/kg	< 0.10	1		
TPH Total WAC	2670	M	mg/kg	< 10	500		
Total (Of 17) PAH's	2800	N	mg/kg	< 2.0	100		
pН	2010	M		7.6		>6	
Acid Neutralisation Capacity	2015	N	mol/kg	< 0.0020		To evaluate	To evaluate
Eluate Analysis		10:1 Eluate		10:1 Eluate	Limit values for compliance leaching t		
			mg/l	mg/kg	using B	6 10 I/kg	
Arsenic	1455	U	0.0006	0.0058	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	< 0.0005	< 0.0005	0.5	10	70
Copper	1455	U	0.0007	0.0071	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0029	0.029	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	0.0008	0.0083	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	0.003	0.029	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.13	1.3	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	19	190	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	17	170	500	800	1000

Solid Information						
Dry mass of test portion/kg	0.090					
Moisture (%)	20					

Waste Acceptance Criteria

Project: 5871 Ardclough Rd, Celbridge

Project: 5871 Ardclough Rd, Celb							
Chemtest Job No:	21-25476				Landfill \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1247007					Limits	
Sample Ref:	TP 05					Stable, Non-	
Sample ID:	MK 04					reactive	
Sample Location:						hazardous	Hazardous
Top Depth(m):	0.50				Inert Waste	waste in non-	Waste
Bottom Depth(m):	0.50				Landfill	hazardous	Landfill
Sampling Date:	19-Jul-2021					Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	M	%	0.72	3	5	6
Loss On Ignition	2610	M	%	2.5			10
Total BTEX	2760	M	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815	M	mg/kg	< 0.10	1		
TPH Total WAC	2670	M	mg/kg	< 10	500		
Total (Of 17) PAH's	2800	N	mg/kg	< 2.0	100		
pH	2010	M		7.2		>6	
Acid Neutralisation Capacity	2015	N	mol/kg	< 0.0020		To evaluate	To evaluate
Eluate Analysis		10:1 Eluate		10:1 Eluate	Limit values for compliance leaching to		
			mg/l	mg/kg	using B	6 10 I/kg	
Arsenic	1455	U	0.0006	0.0064	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0006	0.0061	0.5	10	70
Copper	1455	U	< 0.0005	< 0.0005	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0025	0.025	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	0.0005	0.0052	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	0.039	0.39	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.10	1.0	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	9.1	91	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	11	110	500	800	1000

Solid Information						
Dry mass of test portion/kg	0.090					
Moisture (%)	11					

Waste Acceptance Criteria

Test Methods

SOP	Title	Parameters included	Method summary		
1010	pH Value of Waters	рН	pH Meter		
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Conductivity Meter		
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.		
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	Filtration of samples followed by direct determination by inductively coupled plasma mass spectrometry (ICP-MS).		
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation		
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.		
2010	pH Value of Soils	рН	pH Meter		
2015	Acid Neutralisation Capacity	Acid Reserve	Titration		
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.		
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930		
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES		
2180	Sulphur (Elemental) in Soils by HPLC	Sulphur	Dichloromethane extraction / HPLC with UV detection		
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry		
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.		
2325	Sulphide in Soils	Sulphide	Steam distillation with sulphuric acid / analysis by 'Aquakem 600' Discrete Analyser, using N,N–dimethyl-p-phenylenediamine.		
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.		
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.		
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.		
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.		
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.		
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3-band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID		
2680	TPH A/A Split	Aliphatics: >C5-C6, >C6-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21- C35, >C35- C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44	Dichloromethane extraction / GCxGC FID detection		

Test Methods

SOP	Title	Parameters included	Method summary		
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.		
Speciated Polynuclear 2800 Aromatic Hydrocarbons (PAH) in Soil by GC-MS		Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS		
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS		
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.		
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge		

Report Information

Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Τ This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated "less than" < "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

Waste Classification Report

HazWasteOnline™ classifies waste as either **hazardous** or **non-hazardous** based on its chemical composition, related legislation and the rules and data defined in the current UK or EU technical guidance (Appendix C) (note that HP 9 Infectious is not assessed). It is the responsibility of the classifier named below to:

- a) understand the origin of the waste
- b) select the correct List of Waste code(s)
- c) confirm that the list of determinands, results and sampling plan are fit for purpose
- d) select and justify the chosen metal species (Appendix B)
- e) correctly apply moisture correction and other available corrections
- f) add the meta data for their user-defined substances (Appendix A)
- g) check that the classification engine is suitable with respect to the national destination of the waste (Appendix C)

Job name

5871

Description/Comments

Client: Kildare County Council **Engineer: Tobin Consulting Engineers**

Project

Ardclough Road

Site

Celbridge, Co. Kildare

Classified by

Name:

Company:

Stephen Letch

Site Investigations Ltd

Date:

29 Jul 2021 15:46 GMT

Telephone:

00353 86817 9449

HazWasteOnline™ Certification:

Course

Hazardous Waste Classification

HazWasteOnline™ provides a two day, hazardous waste classification course that covers the use of the software and both basic and advanced waste classification techniques. Certification has to be renewed every 3 years. CERTIFIED

Date

09 Oct 2019

Next 3 year Refresher due by Oct 2022

Job summary

#	Sample name	Depth [m]	Classification Result	Hazard properties	WAC I	Page	
π	Sample hame	Deptil [iii]	Classification (tesuit	riazaru properties	Inert	Non Haz	- i age
1	TP01 - 0.50m	0.50-0.50	Non Hazardous		Pass	Pass	2
2	TP02 - 0.50m	0.50-0.50	Non Hazardous		Pass	Pass	6
3	TP03 - 0.50m	0.50-0.50	Non Hazardous		Pass	Pass	10
4	TP04 - 0.50m	0.50-0.50	Non Hazardous		Pass	Pass	14
5	TP05 - 0.50m	0.50-0.50	Non Hazardous		Pass	Pass	18

Related documents

# Name	Description
1 HWOL_21-25476-20210729 152757.hwol	.hwol file used to create the Job

WAC results

WAC Settings: samples in this Job constitute a single population.

WAC limits used to evaluate the samples in this Job: "Ireland"

The WAC used in this report are the WAC defined for the inert and non-hazardous classes of landfill in the Republic of Ireland. You should check the actual acceptance criteria when the disposal site is identified as they may differ from the generic WAC used in this report.

Report

Created date: 29 Jul 2021 15:46 GMT Created by: Stephen Letch

Appendices	Page
Appendix A: Classifier defined and non CLP determinands	22
Appendix B: Rationale for selection of metal species	24
Appendix C: Version	25

Classification of sample: TP01 - 0.50m

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code:
TP01 - 0.50m Chapter:
Sample Depth:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05

Entry: 17 05 0

0.50-0.50 m Moisture content:

14% (wet weight correction)

Hazard properties

None identified

Determinands

Moisture content: 14% Wet Weight Moisture Correction applied (MC)

#		Determinand CLP index number	r G	User entere	ed data	Conv. Factor	Compound o	conc.	Classification value	MC Applied	Conc. Not Used
1	0	pH PH		8.6	рН		8.6	рН	8.6 pH		
	_	boron { diboron trioxide; boric oxide }								+	
2	4	005-008-00-8 215-125-8 1303-86-2		0.56	mg/kg	3.22	1.551	mg/kg	0.000155 %	√	
3	4	sulfur { sulfur } 016-094-00-1 231-722-6 7704-34-9		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
4	4	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
5	4	barium { barium oxide }		58	mg/kg	1.117	55.691	mg/kg	0.00557 %	√	
6	-	cadmium { cadmium oxide }		1.2	mg/kg	1.142	1.179	mg/kg	0.000118 %	√	
7	4	molybdenum { molybdenum(VI) oxide } 042-001-00-9 215-204-7 1313-27-5		2.1	mg/kg	1.5	2.709	mg/kg	0.000271 %	√	
8	4	antimony { antimony compounds, with the exception of the tetroxide (Sb2O4), pentoxide (Sb2O5), trisulphide (Sb2S3), pentasulphide (Sb2S5) and those specified elsewhere in this Annex }	1	<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
9	4	arsenic { arsenic } 033-001-00-X 231-148-6 7440-38-2		16	mg/kg		13.76	mg/kg	0.00138 %	√	
10		granulated copper; [particle length: from 0,9 mm to 6,0 mm; particle width: from 0,494 to 0,949 mm] 029-024-00-X 231-159-6 7440-50-8		18	mg/kg		15.48	mg/kg	0.00155 %	✓	
11	4	mercury { mercury } 080-001-00-0 231-106-7 7439-97-6		0.11	mg/kg		0.0946	mg/kg	0.00000946 %	√	
12	ď	nickel { nickel(II) oxide (nickel monoxide) } 028-003-00-2		24	mg/kg	1.273	26.266	mg/kg	0.00263 %	✓	
13		lead { lead compounds with the exception of those specified elsewhere in this Annex }	1	30	mg/kg		25.8	mg/kg	0.00258 %	✓	

Page 2 of 25 6UBJ4-4FFZ4-3JRLA www.hazwasteonline.com

HazWasteOnline[™] Report created by Stephen Letch on 29 Jul 2021

#		Determinand CAS Number	P Note	User entered d	lata	Conv. Factor	Compound conc.	Classification value	Applied:	Conc. Not Used	
		CLP index number	CLP						MC,		
14	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		0.68 m	ng/kg	1.405	0.822 mg/kg	0.0000822 %	√		
15	æ å	zinc { zinc oxide }		89 m	ng/kg	1.245	95.27 mg/kg	0.00953 %	✓		
			\vdash								
16	4	chromium in chromium(III) compounds {		17 m	ng/kg	1.462	21.368 mg/kg	0.00214 %	✓		
17	4	chromium in chromium(VI) compounds { chromium(VI) oxide }		<0.5 n	ng/kg	1.923	<0.962 mg/kg	<0.0000962 %		<lod< td=""></lod<>	
18	0	024-001-00-0		<10 n	ng/kg		<10 mg/kg	<0.001 %		<lod< td=""></lod<>	
		TPH	\vdash								
19		benzene 200-753-7 71-43-2		<1 µ	ıg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>	
20		toluene		<1 µ	ıg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>	
		601-021-00-3 203-625-9 108-88-3		. μ	J 9				Ш		
21	0	ethylbenzene 601-023-00-4 202-849-4 100-41-4		<1 µ	ıg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>	
22		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane 603-181-00-X 216-653-1 1634-04-4		<1 µ	ıg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>	
23		naphthalene 601-052-00-2 202-049-5 91-20-3		<0.1 n	ng/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>	
24	0	acenaphthylene 205-917-1 208-96-8		<0.1 m	ng/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>	
0.5	0	acenaphthene		0.4			0.1	2 22224 24			
25	0	201-469-6 83-32-9 fluorene			ng/kg		<0.1 mg/kg			<lod< td=""></lod<>	
26	0	201-695-5 86-73-7 phenanthrene			ng/kg		<0.1 mg/kg			<lod< td=""></lod<>	
27		201-581-5 85-01-8		<0.1 m	ng/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>	
28	0	anthracene		<0.1 m	ng/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>	
		204-371-1 120-12-7		-0.1	19/119			-0.00001 70		-205	
29	0	fluoranthene		<0.1 m	ng/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>	
		205-912-4 206-44-0									
30	0	204-927-3 129-00-0		<0.1 m	ng/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>	
31		benzo[a]anthracene 601-033-00-9 200-280-6 56-55-3		<0.1 n	ng/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>	
32		chrysene 601-048-00-0 205-923-4 218-01-9		<0.1 n	ng/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>	
33		benzo[b]fluoranthene 601-034-00-4 205-911-9 205-99-2		<0.1 n	ng/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>	
34		benzo[k]fluoranthene		<0.1 n	ng/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>	
_		601-036-00-5							H		
35		601-032-00-3 200-028-5 50-32-8		<0.1 n	ng/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>	
36	0	indeno[123-cd]pyrene		<0.1 m	ng/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>	
37		dibenz[a,h]anthracene 601-041-00-2 200-181-8 53-70-3		<0.1 n	ng/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>	
38	0	benzo[ghi]perylene 205-883-8 191-24-2		<0.1 n	ng/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>	
39	0	coronene 205-881-7 191-07-1		<0.1 n	ng/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>	
40	0	monohydric phenols		<0.1 m	ng/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>	
_											

HazWasteOnline[™] Report created by Stephen Letch on 29 Jul 2021

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered da	ta	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
41			202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<2 µg	/kg		<0.002	mg/kg	<0.0000002 %		<lod< th=""></lod<>
42	polychlorobiphenyls; PCB 602-039-00-4 215-648-1 1336-36-3			<0.1 mg	g/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>		
										Total:	0.0277 %		

٠			
ŀ	•	۵	١

	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
_	Determinand defined or amended by Haz-Wests Online (see Appendix A)

ď Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 4 of 25 6UBJ4-4FFZ4-3JRLA www.hazwasteonline.com

WAC results for sample: TP01 - 0.50m

WAC Settings: samples in this Job constitute a single population.

WAC limits used to evaluate this sample: "Ireland"

The WAC used in this report are the WAC defined for the inert and non-hazardous classes of landfill in the Republic of Ireland. You should check the actual acceptance criteria when the disposal site is identified as they may differ from the generic WAC used in this report.

The sample PASSES the Inert (Inert waste landfill) criteria.

The sample PASSES the Non Haz (Non hazardous waste landfill) criteria.

WAC Determinands

	Solid Waste Analysis			Landfill Waste Acce	ptance Criteria Limits
#	Determinand		User entered data	Inert waste landfill	Non hazardous waste landfill
1	TOC (total organic carbon)	%	1.3	3	5
2	LOI (loss on ignition)	%	4.1	-	-
3	BTEX (benzene, toluene, ethylbenzene and xylenes)	mg/kg	<0.01	6	-
4	PCBs (polychlorinated biphenyls, 7 congeners)	mg/kg	<0.1	1	-
5	Mineral oil (C10 to C40)	mg/kg	<10	500	-
6	PAHs (polycyclic aromatic hydrocarbons)	mg/kg	<2	100	-
7	рН	рН	8.6	-	>6
8	ANC (acid neutralisation capacity)	mol/kg	0.005	-	-
	Eluate Analysis 10:1				
9	arsenic	mg/kg	0.036	0.5	2
10	barium	mg/kg	<0.0005	20	100
11	cadmium	mg/kg	<0.0001	0.04	1
12	chromium	mg/kg	<0.0005	0.5	10
13	copper	mg/kg	0.027	2	50
14	mercury	mg/kg	<5.0e-05	0.01	0.2
15	molybdenum	mg/kg	0.07	0.5	10
16	nickel	mg/kg	0.0099	0.4	10
17	lead	mg/kg	<0.0005	0.5	10
18	antimony	mg/kg	<0.0005	0.06	0.7
19	selenium	mg/kg	0.0056	0.1	0.5
20	zinc	mg/kg	0.025	4	50
21	chloride	mg/kg	<10	800	15,000
22	fluoride	mg/kg	4.2	10	150
23	sulphate	mg/kg	<10	1,000	20,000
24	phenol index	mg/kg	<0.3	1	-
25	DOC (dissolved organic carbon)	mg/kg	240	500	800
26	TDS (total dissolved solids)	mg/kg	650	4,000	60,000

Key

User supplied data

Classification of sample: TP02 - 0.50m

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: TP02 - 0.50m Chapter:

Sample Depth:
0.50-0.50 m Entry:

Moisture content:

16%

(wet weight correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)17 05 04 (Soil and stones other than those mentioned in 17 05

Hazard properties

None identified

Determinands

Moisture content: 16% Wet Weight Moisture Correction applied (MC)

#		Determinand CLP index number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	0	pH PH		7.5 pH		7.5 pH	7.5 pH		
2	4	boron { diboron trioxide; boric oxide } 005-008-00-8 215-125-8 1303-86-2		<0.4 mg/kg	3.22	<1.288 mg/kg	<0.000129 %		<lod< td=""></lod<>
3	-	sulfur { sulfur } 016-094-00-1 231-722-6 7704-34-9		<1 mg/kg	1	<1 mg/kg	<0.0001 %		<lod< td=""></lod<>
4	4	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<0.5 mg/kg	1.884	<0.942 mg/kg	<0.0000942 %		<lod< td=""></lod<>
5	4	barium { • barium oxide }		99 mg/kg	1.117	92.849 mg/kg	0.00928 %	√	
6	4	cadmium { cadmium oxide } 048-002-00-0 215-146-2 1306-19-0		1.1 mg/kg	1.142	1.056 mg/kg	0.000106 %	√	
7	4	molybdenum { molybdenum(VI) oxide } 042-001-00-9		<2 mg/kg	1.5	<3 mg/kg	<0.0003 %		<lod< td=""></lod<>
8	4	antimony { antimony compounds, with the exception of the tetroxide (Sb2O4), pentoxide (Sb2O5), trisulphide (Sb2S3), pentasulphide (Sb2S5) and those specified elsewhere in this Annex }	1	<2 mg/kg		<2 mg/kg	<0.0002 %		<lod< td=""></lod<>
9	4	arsenic { <mark>arsenic</mark> } 033-001-00-X 231-148-6 7440-38-2		10 mg/kg	3	8.4 mg/kg	0.00084 %	√	
10		granulated copper; [particle length: from 0,9 mm to 6,0 mm; particle width: from 0,494 to 0,949 mm] 029-024-00-X 231-159-6 7440-50-8		12 mg/kg	ı	10.08 mg/kg	0.00101 %	√	
11	«	mercury { mercury } 080-001-00-0 231-106-7 7439-97-6		<0.1 mg/kg	1	<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
12	~	nickel { nickel(II) oxide (nickel monoxide) } 028-003-00-2		17 mg/kg	1.273	18.173 mg/kg	0.00182 %	√	
13		lead { • lead compounds with the exception of those specified elsewhere in this Annex }	1	20 mg/kg	1	16.8 mg/kg	0.00168 %	√	

Page 6 of 25 6UBJ4-4FFZ4-3JRLA www.hazwasteonline.com

HazWasteOnline[™] Report created by Stephen Letch on 29 Jul 2021

#			erminand		CLP Note	User entered	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		CLP index number EC	Number	CAS Number	CLF							MC	
14	4	selenium { selenium compo cadmium sulphoselenide a in this Annex }				0.51	mg/kg	1.405	0.602	mg/kg	0.0000602 %	✓	
15	ď,	zinc { zinc oxide }	2-5	1314-13-2		78	mg/kg	1.245	81.554	mg/kg	0.00816 %	✓	
16	4	chromium in chromium(III) oxide }	•	chromium(III)		16	mg/kg	1.462	19.643	mg/kg	0.00196 %	✓	
17	4	chromium in chromium(VI) oxide }	compounds	{ chromium(VI)		<0.5	mg/kg	1.923	<0.962	mg/kg	<0.0000962 %		<lod< td=""></lod<>
18	0	024-001-00-0 215-607 TPH (C6 to C40) petroleun		1333-82-0 TPH		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
19		benzene 601-020-00-8 200-753	3-7	71-43-2		<1	μg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
20		toluene 601-021-00-3 203-625		108-88-3		<1	μg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
21	0	ethylbenzene 601-023-00-4 202-849		100-41-4	L	<1	μg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
22		tert-butyl methyl ether; MTl 2-methoxy-2-methylpropan 603-181-00-X 216-653	ie	1634-04-4		<1	μg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
23		naphthalene 601-052-00-2 202-049	9-5	91-20-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
24	0	acenaphthylene 205-917	7-1	208-96-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
25	0	acenaphthene 201-469	9-6	83-32-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
26	0	fluorene 201-695	5-5	86-73-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
27	0	201-58° anthracene	1-5	85-01-8		<0.1	mg/kg		<0.1	mg/kg	<u>.</u>		<lod< td=""></lod<>
28	0	204-377 fluoranthene	1-1	120-12-7		<0.1	mg/kg mg/kg		<0.1	mg/kg	<0.00001 %		<lod <lod< td=""></lod<></lod
30	0	205-912 pyrene		206-44-0		<0.1	mg/kg		<0.1	mg/kg			<lod <lod< td=""></lod<></lod
31		benzo[a]anthracene		129-00-0		<0.1	mg/kg		<0.1		<0.00001 %		<lod< td=""></lod<>
32		601-033-00-9 200-280 chrysene 601-048-00-0 205-923		56-55-3 218-01-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
33		benzo[b]fluoranthene 601-034-00-4 205-91		205-99-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
34		benzo[k]fluoranthene 601-036-00-5 205-916		207-08-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
35		benzo[a]pyrene; benzo[def 601-032-00-3 [200-028		50-32-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %	Ц	<lod< td=""></lod<>
36	0	indeno[123-cd]pyrene [205-893]	3-2	193-39-5		<0.1	mg/kg		<0.1		<0.00001 %		<lod< td=""></lod<>
37	_	dibenz[a,h]anthracene 601-041-00-2 200-18 ² benzo[ghi]perylene	1-8	53-70-3		<0.1	mg/kg		<0.1		<0.00001 %		<lod< td=""></lod<>
38	0	205-883 coronene	3-8	191-24-2		<0.1	mg/kg		<0.1	mg/kg			<lod< td=""></lod<>
39 40	0	205-88 ² monohydric phenols	1-7	191-07-1	-	<0.1	mg/kg mg/kg		<0.1	mg/kg	<0.00001 %	H	<lod <lod< td=""></lod<></lod
40				P1186		\0.1	mg/kg		\0.1	mg/kg	-0.00001 70		\LUD

HazWasteOnline[™] Report created by Stephen Letch on 29 Jul 2021

#	CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered da	ata	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
41		202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]	-	<2 μί	g/kg		<0.002	mg/kg	<0.0000002 %		<lod< th=""></lod<>
42	polychlorobiphenyls 602-039-00-4	s; PCB 215-648-1	1336-36-3		<0.1 m	ıg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
									Total:	0.027 %		

	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
_	Determinand defined or amended by Haz-Weste Online (see Appendix A)

æ\$ Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration <LOD Below limit of detection

ND Not detected

CLP: Note 1 $\,$ Only the metal concentration has been used for classification

Page 8 of 25 6UBJ4-4FFZ4-3JRLA www.hazwasteonline.com

WAC results for sample: TP02 - 0.50m

WAC Settings: samples in this Job constitute a single population.

WAC limits used to evaluate this sample: "Ireland"

The WAC used in this report are the WAC defined for the inert and non-hazardous classes of landfill in the Republic of Ireland. You should check the actual acceptance criteria when the disposal site is identified as they may differ from the generic WAC used in this report.

The sample PASSES the Inert (Inert waste landfill) criteria.

The sample PASSES the Non Haz (Non hazardous waste landfill) criteria.

WAC Determinands

	Solid Waste Analysis	Landfill Waste Acceptance Criteria Limits				
#	Determinand	User entered data	Inert waste landfill	Non hazardous waste landfill		
1	TOC (total organic carbon)		0.86	3	5	
2	LOI (loss on ignition)	%	2.6	-	-	
3	BTEX (benzene, toluene, ethylbenzene and xylenes)	mg/kg	<0.01	6	-	
4	PCBs (polychlorinated biphenyls, 7 congeners)	mg/kg	<0.1	1	-	
5	Mineral oil (C10 to C40)	mg/kg	<10	500	-	
6	PAHs (polycyclic aromatic hydrocarbons)	mg/kg	<2	100	-	
7	pH	рН	7.5	-	>6	
8	ANC (acid neutralisation capacity)	mol/kg	<0.002	-	-	
	Eluate Analysis 10:1					
9	arsenic	mg/kg	0.0039	0.5	2	
10	barium	mg/kg	<0.0005	20	100	
11	cadmium	mg/kg	<0.0001	0.04	1	
12	chromium	mg/kg	<0.0005	0.5	10	
13	copper	mg/kg	0.0056	2	50	
14	mercury	mg/kg	<5.0e-05	0.01	0.2	
15	molybdenum	mg/kg	0.027	0.5	10	
16	nickel	mg/kg	<0.0005	0.4	10	
17	lead	mg/kg	<0.0005	0.5	10	
18	antimony	mg/kg	<0.0005	0.06	0.7	
19	selenium	mg/kg	<0.0005	0.1	0.5	
20	zinc	mg/kg	<0.0025	4	50	
21	chloride	mg/kg	<10	800	15,000	
22	fluoride	mg/kg	1.4	10	150	
23	sulphate	mg/kg	<10	1,000	20,000	
24	phenol index	mg/kg	<0.3	1	-	
25	DOC (dissolved organic carbon)	mg/kg	180	500	800	
26	TDS (total dissolved solids)	mg/kg	120	4,000	60,000	

Key

User supplied data

17: Construction and Demolition Wastes (including excavated soil

Classification of sample: TP03 - 0.50m

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: TP03 - 0.50m Chapter: Sample Depth:

Sample Depth: from contaminated sites)

0.50-0.50 m Entry: 17 05 04 (Soil and stones other than those mentioned in 17 05

Moisture content:

15%

(wet weight correction)

Hazard properties

None identified

Determinands

Moisture content: 15% Wet Weight Moisture Correction applied (MC)

#		Determinand CLP index number	CLP Note	User entered o	lata	Conv. Factor	Compound of	conc.	Classification value	MC Applied	Conc. Not Used
1	0	pH PH		7 p	Н		7	рН	7pH		
2	4	boron { diboron trioxide; boric oxide } 005-008-00-8		<0.4 r	ng/kg	3.22	<1.288	mg/kg	<0.000129 %		<lod< td=""></lod<>
3	-	sulfur { sulfur } 016-094-00-1 231-722-6 7704-34-9		<1 r	ng/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
4	≪	cyanides { ** salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<0.5 r	ng/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
5	4	barium { • barium oxide }		49 r	ng/kg	1.117	46.502	mg/kg	0.00465 %	√	
6	4	cadmium { cadmium oxide } 048-002-00-0 215-146-2 1306-19-0		1.1 r	ng/kg	1.142	1.068	mg/kg	0.000107 %	✓	
7	-	molybdenum { molybdenum(VI) oxide } 042-001-00-9		<2 r	ng/kg	1.5	<3	mg/kg	<0.0003 %		<lod< td=""></lod<>
8	4	antimony { antimony compounds, with the exception of the tetroxide (Sb2O4), pentoxide (Sb2O5), trisulphide (Sb2S3), pentasulphide (Sb2S5) and those specified elsewhere in this Annex }	1	<2 r	ng/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
9	4	arsenic { arsenic } 033-001-00-X		10 r	ng/kg		8.5	mg/kg	0.00085 %	√	
10		granulated copper; [particle length: from 0,9 mm to 6,0 mm; particle width: from 0,494 to 0,949 mm] 029-024-00-X [231-159-6] [7440-50-8]		14 r	ng/kg		11.9	mg/kg	0.00119 %	√	
11	4			<0.1 r	ng/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
12	æ.	nickel { nickel(II) oxide (nickel monoxide) } 028-003-00-2		17 r	ng/kg	1.273	18.389	mg/kg	0.00184 %	√	
13		lead { lead compounds with the exception of those specified elsewhere in this Annex }	1	21 r	ng/kg		17.85	mg/kg	0.00179 %	√	

Page 10 of 25 6UBJ4-4FFZ4-3JRLA www.hazwasteonline.com

#		Determinand CLD index number	P Note	User entered	data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
		CLP index number	CLP						Σ	
14	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		0.46	mg/kg	1.405	0.549 mg/kg	0.0000549 %	✓	
15		zinc { zinc oxide }		60	mg/kg	1.245	63.48 mg/kg	0.00635 %	√	
		030-013-00-7 215-222-5 1314-13-2							ľ	
16	4	chromium in chromium(III) compounds { chromium(III) oxide }		13	mg/kg	1.462	16.15 mg/kg	0.00162 %	✓	
17	4	chromium in chromium(VI) compounds { chromium(VI) oxide } 024-001-00-0		<0.5	mg/kg	1.923	<0.962 mg/kg	<0.0000962 %		<lod< td=""></lod<>
18	0	TPH (C6 to C40) petroleum group		<10	mg/kg		<10 mg/kg	<0.001 %		<lod< td=""></lod<>
-							 			
19		benzene 601-020-00-8 200-753-7 71-43-2		<1	µg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
20		toluene 601-021-00-3 203-625-9 108-88-3		<1	μg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
		601-021-00-3 203-625-9 108-88-3 ethylbenzene	H						Н	
21	0	601-023-00-4 202-849-4 100-41-4		<1	µg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
22		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane 603-181-00-X 216-653-1 [1634-04-4		<1	μg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
23		naphthalene		<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-052-00-2 202-049-5 91-20-3								
24	0	acenaphthylene 205-917-1 208-96-8		<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
25	0	acenaphthene		<0.1	ma/ka		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
25		201-469-6 83-32-9		~ 0.1	mg/kg			<0.00001 %		LOD
26	0	fluorene 201-695-5 86-73-7		<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
27	0	phenanthrene 201-581-5 85-01-8		<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
28	0	anthracene		<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
		204-371-1 120-12-7								
29	0	fluoranthene		<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
		pyrene								
30	0	204-927-3 129-00-0		<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
31		benzo[a]anthracene 56-55-3		<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
32		chrysene 601-048-00-0 205-923-4 218-01-9		<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
33		benzo[b]fluoranthene		<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-034-00-4 205-911-9 205-99-2								
34		benzo[k]fluoranthene 601-036-00-5		<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
35		benzo[a]pyrene; benzo[def]chrysene		<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-032-00-3 200-028-5 50-32-8			9		9/Ng			
36	0	indeno[123-cd]pyrene 205-893-2 193-39-5		<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
37		dibenz[a,h]anthracene 601-041-00-2 200-181-8 53-70-3		<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
38	0	benzo[ghi]perylene 205-883-8 191-24-2		<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
39	0	coronene 205-881-7 191-07-1		<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
40	0	monohydric phenols		<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
		P1186			2 3					

#	CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered o	lata	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
41		202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<2	ug/kg		<0.002	mg/kg	<0.0000002 %		<lod< th=""></lod<>
42	polychlorobiphenyls	s; PCB 215-648-1	1336-36-3	-	<0.1 r	ng/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
							Total:	0.0206 %				

ν	c	-	٥	١
ı	1		,	1

	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)

æ\$ Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 $\,$ Only the metal concentration has been used for classification

Page 12 of 25 6UBJ4-4FFZ4-3JRLA www.hazwasteonline.com

WAC results for sample: TP03 - 0.50m

WAC Settings: samples in this Job constitute a single population.

WAC limits used to evaluate this sample: "Ireland"

The WAC used in this report are the WAC defined for the inert and non-hazardous classes of landfill in the Republic of Ireland. You should check the actual acceptance criteria when the disposal site is identified as they may differ from the generic WAC used in this report.

The sample PASSES the Inert (Inert waste landfill) criteria.

The sample PASSES the Non Haz (Non hazardous waste landfill) criteria.

WAC Determinands

	Solid Waste Analysis			Landfill Waste Acce	ptance Criteria Limits
#	Determinand		User entered data	Inert waste landfill	Non hazardous waste landfill
1	TOC (total organic carbon)	%	0.96	3	5
2	LOI (loss on ignition)	%	2.7	-	-
3	BTEX (benzene, toluene, ethylbenzene and xylenes)	mg/kg	<0.01	6	-
4	PCBs (polychlorinated biphenyls, 7 congeners)	mg/kg	<0.1	1	-
5	Mineral oil (C10 to C40)	mg/kg	<10	500	-
6	PAHs (polycyclic aromatic hydrocarbons)	mg/kg	<2	100	-
7	рН	рН	7	-	>6
8	ANC (acid neutralisation capacity)	mol/kg	0.004	-	-
	Eluate Analysis 10:1				
9	arsenic	mg/kg	0.0029	0.5	2
10	barium	mg/kg	<0.0005	20	100
11	cadmium	mg/kg	<0.0001	0.04	1
12	chromium	mg/kg	<0.0005	0.5	10
13	copper	mg/kg	0.0072	2	50
14	mercury	mg/kg	<5.0e-05	0.01	0.2
15	molybdenum	mg/kg	0.022	0.5	10
16	nickel	mg/kg	<0.0005	0.4	10
17	lead	mg/kg	<0.0005	0.5	10
18	antimony	mg/kg	<0.0005	0.06	0.7
19	selenium	mg/kg	<0.0005	0.1	0.5
20	zinc	mg/kg	<0.0025	4	50
21	chloride	mg/kg	<10	800	15,000
22	fluoride	mg/kg	1.2	10	150
23	sulphate	mg/kg	<10	1,000	20,000
24	phenol index	mg/kg	<0.3	1	-
25	DOC (dissolved organic carbon)	mg/kg	76	500	800
26	TDS (total dissolved solids)	mg/kg	78	4,000	60,000

Key

User supplied data

17: Construction and Demolition Wastes (including excavated soil

17 05 04 (Soil and stones other than those mentioned in 17 05

Classification of sample: TP04 - 0.50m

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

from contaminated sites)

Sample details

Sample name: LoW Code: TP04 - 0.50m Chapter:

Sample Depth:
0.50-0.50 m Entry:

Moisture content:

20% (wet weight correction)

(3

Hazard properties

None identified

Determinands

Moisture content: 20% Wet Weight Moisture Correction applied (MC)

#		Determinand	Note	User entered data	Conv. Factor	Compound conc.	Classification value	Applied	Conc. Not Used
		CLP index number	CLP					MC	
1	0	pH		7.6 pH		7.6 pH	7.6 pH		
		PH		<u>'</u>		'	- '		
2	æ 🌡	boron { diboron trioxide; boric oxide }		<0.4 mg/kg	3.22	<1.288 mg/kg	<0.000129 %		<lod< td=""></lod<>
		005-008-00-8 215-125-8 1303-86-2				0 0			
3	æ 🎖	sulfur { <mark>sulfur</mark> }		13 mg/kg	1	10.4 mg/kg	0.00104 %	/	
		016-094-00-1 231-722-6 7704-34-9						Ľ	
4	4	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<0.5 mg/kg	1.884	<0.942 mg/kg	<0.0000942 %		<lod< td=""></lod<>
		006-007-00-5	1						
5	4	barium { [®] barium oxide }		38 mg/kg	1.117	33.942 mg/kg	0.00339 %	✓	
		215-127-9 1304-28-5						ľ	
6	ď	cadmium { <mark>cadmium oxide</mark> }		0.79 mg/ka	1.142	0.722 mg/kg	0.0000722 %	/	
Ľ		048-002-00-0 215-146-2 1306-19-0				0.1.22g/ng	0.0000.22 //	ľ	
7	æ 🌡	molybdenum { molybdenum(VI) oxide }		<2 mg/kg	1.5	<3 mg/kg	<0.0003 %		<lod< td=""></lod<>
Ĺ		042-001-00-9 215-204-7 1313-27-5				99			
8	4	antimony { antimony compounds, with the exception of the tetroxide (Sb2O4), pentoxide (Sb2O5), trisulphide (Sb2S3), pentasulphide (Sb2S5) and those specified elsewhere in this Annex }	1	<2 mg/kç	1	<2 mg/kg	<0.0002 %		<lod< td=""></lod<>
	_	arsenic { arsenic }							
9	_	033-001-00-X 231-148-6 7440-38-2	1	9 mg/kg	1	7.2 mg/kg	0.00072 %	√	
10		granulated copper; [particle length: from 0,9 mm to 6,0 mm; particle width: from 0,494 to 0,949 mm] 029-024-00-X 231-159-6 7440-50-8		10 mg/kg	ı	8 mg/kg	0.0008 %	√	
	-	mercury { mercury }							
11	-	080-001-00-0 231-106-7 7439-97-6	-	<0.1 mg/kg	1	<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
	-	nickel { nickel(II) oxide (nickel monoxide) }							
12	~	028-003-00-2		14 mg/kg	1.273	14.253 mg/kg	0.00143 %	√	
13		lead { • lead compounds with the exception of those specified elsewhere in this Annex }	1	17 mg/kg	1	13.6 mg/kg	0.00136 %	✓	
	$oxed{oxed}$	082-001-00-6							

Page 14 of 25 6UBJ4-4FFZ4-3JRLA www.hazwasteonline.com

#		Determinand CLP index number	P Note	User entered da	ata	Conv. Factor	Compound conc.	Classification value	Applied :	Conc. Not Used
		CLP index number	CLP						MC,	
14	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		0.39 m	ıg/kg	1.405	0.438 mg/kg	0.0000438 %	√	
15	4	zinc { zinc oxide } 030-013-00-7		58 m	ıg/kg	1.245	57.755 mg/kg	0.00578 %	✓	
	-									
16	≪\$	chromium in chromium(III) compounds {		12 m	ıg/kg	1.462	14.031 mg/kg	0.0014 %	✓	
17	4	chromium in chromium(VI) compounds { chromium(VI) oxide } 024-001-00-0 215-607-8 1333-82-0		<0.5 m	ıg/kg	1.923	<0.962 mg/kg	<0.0000962 %		<lod< td=""></lod<>
18	0	TPH (C6 to C40) petroleum group		<10 m	ıg/kg		<10 mg/kg	<0.001 %		<lod< td=""></lod<>
		TPH .	-							
19		benzene		<1 μς	g/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
20		toluene		<1 µç	g/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
		601-021-00-3 203-625-9 108-88-3		rs	9				Ш	
21	0	ethylbenzene 601-023-00-4 202-849-4 100-41-4		<1 μς	g/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
22		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane 603-181-00-X		<1 μς	g/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
23		naphthalene 202-049-5 91-20-3		<0.1 m	ıg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
24	0	acenaphthylene 205-917-1 208-96-8		<0.1 m	ıg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
	0	acenaphthene								
25		201-469-6 83-32-9 fluorene		<0.1 m	ıg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
26	0	201-695-5 86-73-7		<0.1 m	ıg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
27	0	phenanthrene 201-581-5 85-01-8		<0.1 m	ıg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
28	0	anthracene 204-371-1 120-12-7		<0.1 m	ıg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
29	0	fluoranthene		<0.1 m	ıg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
		205-912-4 206-44-0			33					
30	0	pyrene 204-927-3 129-00-0		<0.1 m	ıg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
31		benzo[a]anthracene 601-033-00-9 200-280-6 56-55-3		<0.1 m	ıg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
32		chrysene 601-048-00-0 205-923-4 218-01-9		<0.1 m	ıg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
33		benzo[b]fluoranthene 601-034-00-4 205-911-9 205-99-2		<0.1 m	ıg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
<u> </u>		benzo[k]fluoranthene	\vdash	-0.1	,,		.0.4	.0.00001.0/		.1.05
34		601-036-00-5 205-916-6 207-08-9		<0.1 m	ıg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
35		benzo[a]pyrene; benzo[def]chrysene 601-032-00-3		<0.1 m	ıg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
36	0	indeno[123-cd]pyrene		<0.1 m	ıg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
37		dibenz[a,h]anthracene 601-041-00-2 200-181-8 53-70-3		<0.1 m	ıg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
38	0	benzo[ghi]perylene 191-24-2		<0.1 m	ıg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
39	0	coronene 205-881-7 191-07-1		<0.1 m	ıg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
40	0	monohydric phenols P1186		<0.1 m	ıg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
		P1180								

#	CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	l data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
41		202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<2	µg/kg		<0.002	mg/kg	<0.0000002 %		<lod< th=""></lod<>
42	polychlorobiphenyls 602-039-00-4	s; PCB 215-648-1	1336-36-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
									Total:	0.0181 %		

	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
_	Determinand defined or amended by Haz-Weste Online (see Appendix A)

e**c** Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 16 of 25 6UBJ4-4FFZ4-3JRLA www.hazwasteonline.com

WAC results for sample: TP04 - 0.50m

WAC Settings: samples in this Job constitute a single population.

WAC limits used to evaluate this sample: "Ireland"

The WAC used in this report are the WAC defined for the inert and non-hazardous classes of landfill in the Republic of Ireland. You should check the actual acceptance criteria when the disposal site is identified as they may differ from the generic WAC used in this report.

The sample PASSES the Inert (Inert waste landfill) criteria.

The sample PASSES the Non Haz (Non hazardous waste landfill) criteria.

WAC Determinands

	Solid Waste Analysis			Landfill Waste Acce	ptance Criteria Limits
#	Determinand		User entered data	Inert waste landfill	Non hazardous waste landfill
1	TOC (total organic carbon)	%	0.76	3	5
2	LOI (loss on ignition)	%	2.6	-	-
3	BTEX (benzene, toluene, ethylbenzene and xylenes)	mg/kg	<0.01	6	-
4	PCBs (polychlorinated biphenyls, 7 congeners)	mg/kg	<0.1	1	-
5	Mineral oil (C10 to C40)	mg/kg	<10	500	-
6	PAHs (polycyclic aromatic hydrocarbons)	mg/kg	<2	100	-
7	pH	pН	7.6	-	>6
8	ANC (acid neutralisation capacity)	mol/kg	<0.002	-	-
	Eluate Analysis 10:1				
9	arsenic	mg/kg	0.0058	0.5	2
10	barium	mg/kg	<0.0005	20	100
11	cadmium	mg/kg	<0.0001	0.04	1
12	chromium	mg/kg	<0.0005	0.5	10
13	copper	mg/kg	0.0071	2	50
14	mercury	mg/kg	<5.0e-05	0.01	0.2
15	molybdenum	mg/kg	0.029	0.5	10
16	nickel	mg/kg	<0.0005	0.4	10
17	lead	mg/kg	0.0083	0.5	10
18	antimony	mg/kg	<0.0005	0.06	0.7
19	selenium	mg/kg	<0.0005	0.1	0.5
20	zinc	mg/kg	0.029	4	50
21	chloride	mg/kg	<10	800	15,000
22	fluoride	mg/kg	1.3	10	150
23	sulphate	mg/kg	<10	1,000	20,000
24	phenol index	mg/kg	<0.3	1	-
25	DOC (dissolved organic carbon)	mg/kg	170	500	800
26	TDS (total dissolved solids)	mg/kg	190	4,000	60,000

Key

User supplied data

Classification of sample: TP05 - 0.50m

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Entry:

Sample details

Sample name: LoW Code: TP05 - 0.50m Chapter: Sample Depth:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05

0.50-0.50 m Moisture content:

11%

(wet weight correction)

Hazard properties

None identified

Determinands

Moisture content: 11% Wet Weight Moisture Correction applied (MC)

#		Determinand CLP index number	CLP Note	User entered da	ta	Conv. Factor	Compound co	onc.	Classification value	MC Applied	Conc. Not Used
1	0	pH PH		7.2 pH	1		7.2	рН	7.2 pH		
2	4	boron { diboron trioxide; boric oxide } 005-008-00-8 215-125-8 1303-86-2		<0.4 mg	g/kg	3.22	<1.288	mg/kg	<0.000129 %		<lod< td=""></lod<>
3	-	sulfur { sulfur } 016-094-00-1 231-722-6 7704-34-9		26 mg	g/kg		23.14	mg/kg	0.00231 %	✓	
4	4	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<0.5 mg	g/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
5	4	barium { • barium oxide }		50 mg	g/kg	1.117	49.685	mg/kg	0.00497 %	✓	
6	4	cadmium { cadmium oxide } 048-002-00-0 215-146-2 1306-19-0		0.79 mg	g/kg	1.142	0.803	mg/kg	0.0000803 %	✓	
7	4	molybdenum { molybdenum(VI) oxide } 042-001-00-9		<2 mg	g/kg	1.5	<3	mg/kg	<0.0003 %		<lod< td=""></lod<>
8	≪	antimony { antimony compounds, with the exception of the tetroxide (Sb2O4), pentoxide (Sb2O5), trisulphide (Sb2S3), pentasulphide (Sb2S5) and those specified elsewhere in this Annex }	1	<2 mg	g/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
9	4	arsenic { <mark>arsenic</mark> } 033-001-00-X		10 mg	g/kg		8.9	mg/kg	0.00089 %	√	
10		granulated copper; [particle length: from 0,9 mm to 6,0 mm; particle width: from 0,494 to 0,949 mm] 029-024-00-X [231-159-6] [7440-50-8]		11 mg	g/kg		9.79	mg/kg	0.000979 %	√	
11	-			<0.1 mg	g/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
12	~	nickel { nickel(II) oxide (nickel monoxide) } 028-003-00-2		20 mg	g/kg	1.273	22.652	mg/kg	0.00227 %	√	
13		lead { lead compounds with the exception of those specified elsewhere in this Annex }	1	24 mç	g/kg		21.36	mg/kg	0.00214 %	√	

Page 18 of 25 6UBJ4-4FFZ4-3JRLA www.hazwasteonline.com

#		Determinand CLP index number	CLP Note	User entered	data	Conv. Factor	Compound cor	nc.	Classification value	C Applied	Conc. Not Used
-			<u> </u>							N M C	
14	**	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		0.45	mg/kg	1.405	0.563 n	ng/kg	0.0000563 %	✓	
15	æ å	zinc { zinc oxide }		68	mg/kg	1.245	75.33 n	ng/kg	0.00753 %	√	
	_										
16	*	chromium in chromium(III) compounds {		18	mg/kg	1.462	23.414 n	ng/kg	0.00234 %	✓	
17	4	chromium in chromium(VI) compounds { chromium(VI) oxide } 024-001-00-0 215-607-8 1333-82-0		<0.5	mg/kg	1.923	<0.962 n	ng/kg	<0.0000962 %		<lod< td=""></lod<>
18	0	TPH (C6 to C40) petroleum group		<10	mg/kg		<10 n	ng/kg	<0.001 %		<lod< td=""></lod<>
-		TPH	-							Н	
19		benzene 601-020-00-8 200-753-7 71-43-2		<1	μg/kg		<0.001 n	ng/kg	<0.0000001 %		<lod< td=""></lod<>
20		toluene 601-021-00-3 203-625-9 108-88-3		<1	µg/kg		<0.001 n	ng/kg	<0.0000001 %		<lod< td=""></lod<>
	0	ethylbenzene	\vdash							Н	
21		601-023-00-4 202-849-4 100-41-4		<1	µg/kg		<0.001 n	ng/kg	<0.0000001 %		<lod< td=""></lod<>
22		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane 603-181-00-X 216-653-1 1634-04-4		<1	μg/kg		<0.001 n	ng/kg	<0.0000001 %		<lod< td=""></lod<>
23		naphthalene 601-052-00-2 202-049-5 91-20-3	-	<0.1	mg/kg		<0.1 n	ng/kg	<0.00001 %		<lod< td=""></lod<>
24	0	acenaphthylene		<0.1	mg/kg		<0.1 n	ng/kg	<0.00001 %		<lod< td=""></lod<>
-		205-917-1 208-96-8	-							Н	
25	0	acenaphthene 201-469-6 83-32-9		<0.1	mg/kg		<0.1 n	ng/kg	<0.00001 %		<lod< td=""></lod<>
26	0	fluorene 201-695-5 86-73-7		<0.1	mg/kg		<0.1 n	ng/kg	<0.00001 %		<lod< td=""></lod<>
27	0	phenanthrene 201-581-5 85-01-8		<0.1	mg/kg		<0.1 n	ng/kg	<0.00001 %		<lod< td=""></lod<>
28	0	anthracene		<0.1	mg/kg		<0.1 n	ng/kg	<0.00001 %		<lod< td=""></lod<>
-		204-371-1 120-12-7	-						<u> </u>	Н	
29	0	fluoranthene 205-912-4 206-44-0		<0.1	mg/kg		<0.1 n	ng/kg	<0.00001 %		<lod< td=""></lod<>
30	0	pyrene		<0.1	mg/kg		<0.1 n	na/ka	<0.00001 %		<lod< td=""></lod<>
		204-927-3 129-00-0 benzo[a]anthracene	_		ilig/kg			ilg/kg		L	
31		601-033-00-9 200-280-6 56-55-3		<0.1	mg/kg		<0.1 n	ng/kg	<0.00001 %		<lod< td=""></lod<>
32		chrysene 205-923-4 218-01-9	L	<0.1	mg/kg		<0.1 n	ng/kg	<0.00001 %		<lod< td=""></lod<>
33		benzo[b]fluoranthene 601-034-00-4 205-911-9 205-99-2		<0.1	mg/kg		<0.1 n	ng/kg	<0.00001 %		<lod< td=""></lod<>
-		benzo[k]fluoranthene	T							П	
34		601-036-00-5 205-916-6 207-08-9		<0.1	mg/kg		<0.1 n	ng/kg	<0.00001 %		<lod< td=""></lod<>
35		benzo[a]pyrene; benzo[def]chrysene 601-032-00-3 200-028-5 50-32-8		<0.1	mg/kg		<0.1 n	ng/kg	<0.00001 %		<lod< td=""></lod<>
36	0	indeno[123-cd]pyrene		<0.1	mg/kg		<0.1 n	ng/kg	<0.00001 %		<lod< td=""></lod<>
37		dibenz[a,h]anthracene 601-041-00-2 200-181-8 53-70-3		<0.1	mg/kg		<0.1 n	ng/kg	<0.00001 %		<lod< td=""></lod<>
38	0	benzo[ghi]perylene		<0.1	mg/kg		<0.1 n	ng/kg	<0.00001 %		<lod< td=""></lod<>
39	0	205-883-8 191-24-2 coronene		<0.1	mg/kg		<0.1 n	ng/kg	<0.00001 %		<lod< td=""></lod<>
		205-881-7 191-07-1	_	.							
40	0	monohydric phenols P1186		<0.1	mg/kg		<0.1 n	ng/kg	<0.00001 %		<lod< td=""></lod<>

#	CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered d	lata	Conv. Factor	Compound (conc.	Classification value	MC Applied	Conc. Not Used
41		202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<2 μ	ıg/kg		<0.002	mg/kg	<0.0000002 %		<lod< th=""></lod<>
42	polychlorobiphenyls 602-039-00-4	s; PCB 215-648-1	1336-36-3		<0.1 n	ng/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
									Total:	0.0256 %	Г	

	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
_	Determinand defined or amended by Haz-Wests Online (see Appendix A)

æ\$ Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration <LOD Below limit of detection

ND Not detected

CLP: Note 1 $\,$ Only the metal concentration has been used for classification

Page 20 of 25 6UBJ4-4FFZ4-3JRLA www.hazwasteonline.com

WAC results for sample: TP05 - 0.50m

WAC Settings: samples in this Job constitute a single population.

WAC limits used to evaluate this sample: "Ireland"

The WAC used in this report are the WAC defined for the inert and non-hazardous classes of landfill in the Republic of Ireland. You should check the actual acceptance criteria when the disposal site is identified as they may differ from the generic WAC used in this report.

The sample PASSES the Inert (Inert waste landfill) criteria.

The sample PASSES the Non Haz (Non hazardous waste landfill) criteria.

WAC Determinands

	Solid Waste Analysis	Landfill Waste Acceptance Criteria Limits			
#	Determinand		User entered data	Inert waste landfill	Non hazardous waste landfill
1	TOC (total organic carbon)	%	0.72	3	5
2	LOI (loss on ignition)	%	2.5	-	-
3	BTEX (benzene, toluene, ethylbenzene and xylenes)	mg/kg	<0.01	6	-
4	PCBs (polychlorinated biphenyls, 7 congeners)	mg/kg	<0.1	1	-
5	Mineral oil (C10 to C40)	mg/kg	<10	500	-
6	PAHs (polycyclic aromatic hydrocarbons)	mg/kg	<2	100	-
7	рН	рН	7.2	-	>6
8	ANC (acid neutralisation capacity)	mol/kg	<0.002	-	-
	Eluate Analysis 10:1				
9	arsenic	mg/kg	0.0064	0.5	2
10	barium	mg/kg	<0.0005	20	100
11	cadmium	mg/kg	<0.0001	0.04	1
12	chromium	mg/kg	0.0061	0.5	10
13	copper	mg/kg	<0.0005	2	50
14	mercury	mg/kg	<5.0e-05	0.01	0.2
15	molybdenum	mg/kg	0.025	0.5	10
16	nickel	mg/kg	<0.0005	0.4	10
17	lead	mg/kg	0.0052	0.5	10
18	antimony	mg/kg	<0.0005	0.06	0.7
19	selenium	mg/kg	<0.0005	0.1	0.5
20	zinc	mg/kg	0.39	4	50
21	chloride	mg/kg	<10	800	15,000
22	fluoride	mg/kg	1	10	150
23	sulphate	mg/kg	<10	1,000	20,000
24	phenol index	mg/kg	<0.3	1	-
25	DOC (dissolved organic carbon)	mg/kg	110	500	800
26	TDS (total dissolved solids)	mg/kg	91	4,000	60,000

Key

User supplied data

Appendix A: Classifier defined and non CLP determinands

pH (CAS Number: PH)

Description/Comments: Appendix C4 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: None.

salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex

CLP index number: 006-007-00-5

Description/Comments: Conversion factor based on a worst case compound: sodium cyanide

Data source: Commission Regulation (EC) No 790/2009 - 1st Adaptation to Technical Progress for Regulation (EC) No 1272/2008.

(ATP1)

Additional Hazard Statement(s): EUH032 >= 0.2 % Reason for additional Hazards Statement(s):

14 Dec 2015 - EUH032 >= 0.2 % hazard statement sourced from: WM3, Table C12.2

• barium oxide (EC Number: 215-127-9, CAS Number: 1304-28-5)

Description/Comments: Data from ECHA's C&L Inventory Database, Sigma Aldrich SDS dated 6/2/20 Data source: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/88825

Data source date: 02 Apr 2020

Hazard Statements: Acute Tox. 3 H301, Skin Corr. 1B H314, Eye Dam. 1 H318, Acute Tox. 1 H332

arsenic (EC Number: 231-148-6, CAS Number: 7440-38-2)

CLP index number: 033-001-00-X

Description/Comments: Worst Case: IARC considers arsenic Group 1; Carcinogenic to humans

Data source: Regulation 1272/2008/EC - Classification, labelling and packaging of substances and mixtures. (CLP)

Additional Hazard Statement(s): Carc. 1A H350 Reason for additional Hazards Statement(s):

29 Sep 2015 - Carc. 1A H350 hazard statement sourced from: IARC Group 1 (23, Sup 7, 100C) 2012

lead compounds with the exception of those specified elsewhere in this Annex

CLP index number: 082-001-00-6

Description/Comments: Least-worst case: IARC considers lead compounds Group 2A; Probably carcinogenic to humans; Lead REACH

Consortium, following CLP protocols, considers many simple lead compounds to be Carcinogenic category 2 Data source: Regulation 1272/2008/EC - Classification, labelling and packaging of substances and mixtures. (CLP)

Additional Hazard Statement(s): Carc. 2 H351 Reason for additional Hazards Statement(s):

03 Jun 2015 - Carc. 2 H351 hazard statement sourced from: IARC Group 2A (Sup 7, 87) 2006; Lead REACH Consortium

www.reach-lead.eu/substanceinformation.html. Review date 29/09/2015

chromium(III) oxide (EC Number: 215-160-9, CAS Number: 1308-38-9)

Description/Comments: Data from ECHA's C&L inventory database

Data source: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/33806

Data source date: 30 Apr 2020

Hazard Statements: Acute Tox. 4 H302 , Skin Sens. 1 H317 , Eye Irrit. 2 H319

TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013

Data source: WM3 1st Edition 2015 Data source date: 25 May 2015

 $Hazard\ Statements:\ Flam.\ Liq.\ 3\ H226\ ,\ Asp.\ Tox.\ 1\ H304\ ,\ STOT\ RE\ 2\ H373\ ,\ Muta.\ 1B\ H340\ ,\ Carc.\ 1B\ H350\ ,\ Repr.\ 2\ H361d\ ,\ Aquatic\ Chronic\ 2\ H361d\ ,\ Application A$

H411

ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)

CLP index number: 601-023-00-4

Description/Comments:

Data source: Commission Regulation (EU) No 605/2014 – 6th Adaptation to Technical Progress for Regulation (EC) No 1272/2008.

(ATP6)

Additional Hazard Statement(s): Carc. 2 H351 Reason for additional Hazards Statement(s):

03 Jun 2015 - Carc. 2 H351 hazard statement sourced from: IARC Group 2B (77) 2000

Page 22 of 25 6UBJ4-4FFZ4-3JRLA www.hazwasteonline.com

acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Acute Tox. 4 H302, Acute Tox. 1 H330, Acute Tox. 1 H310, Eye Irrit. 2 H319, STOT SE 3 H335, Skin Irrit. 2 H315

acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Eye Irrit. 2 H319, STOT SE 3 H335, Skin Irrit. 2 H315, Aquatic Acute 1 H400, Aquatic Chronic 1 H410, Aquatic Chronic 2 H411

• fluorene (EC Number: 201-695-5, CAS Number: 86-73-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Aquatic Acute 1 H400, Aquatic Chronic 1 H410

phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Acute Tox. 4 H302 , Eye Irrit. 2 H319 , STOT SE 3 H335 , Carc. 2 H351 , Skin Sens. 1 H317 , Aquatic Acute 1 H400 , Aquatic

Chronic 1 H410, Skin Irrit. 2 H315

anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Eye Irrit. 2 H319, STOT SE 3 H335, Skin Irrit. 2 H315, Skin Sens. 1 H317, Aquatic Acute 1 H400, Aquatic Chronic 1 H410

• fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Acute Tox. 4 H302, Aquatic Acute 1 H400, Aquatic Chronic 1 H410

pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Skin Irrit. 2 H315 , Eye Irrit. 2 H319 , STOT SE 3 H335 , Aquatic Acute 1 H400 , Aquatic Chronic 1 H410

• indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015 Hazard Statements: Carc. 2 H351

• benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 23 Jul 2015

Hazard Statements: Aquatic Acute 1 H400 , Aquatic Chronic 1 H410

coronene (EC Number: 205-881-7, CAS Number: 191-07-1)

Description/Comments: Data from C&L Inventory Database; no entries in Registered Substances or Pesticides Properties databases; SDS: Sigma Aldrich, 1907/2006 compliant, dated 2012 - no entries; IARC – Group 3, not carcinogenic.

Data source: http://clp-inventory.echa.europa.eu/SummaryOfClassAndLabelling.aspx?SubstanceID=17010&HarmOnly=no?fc=true&lang=en

Data source date: 16 Jun 2014 Hazard Statements: STOT SE 2 H371

monohydric phenols (CAS Number: P1186)

Description/Comments: Combined hazards statements from harmonised entries in CLP for phenol, cresols and xylenols (604-001-00-2, 604-004-00-9, 604-004-00-9).

604-006-00-X)

Data source: CLP combined data Data source date: 26 Mar 2019

Hazard Statements: Acute Tox. 3 H301, Acute Tox. 3 H311, Acute Tox. 3 H331, Skin Corr. 1B H314, Skin Corr. 1B H314 >= 3 %, Skin Irrit. 2 H315 1 £ conc. < 3 %, Eye Irrit. 2 H319 1 £ conc. < 3 %, Muta. 2 H341, STOT RE 2 H373, Aquatic Chronic 2 H411

polychlorobiphenyls; PCB (EC Number: 215-648-1, CAS Number: 1336-36-3)

CLP index number: 602-039-00-4

Description/Comments: Worst Case: IARC considers PCB Group 1; Carcinogenic to humans; POP specific threshold from ATP1 (Regulation 756/2010/EU) to POPs Regulation (Regulation 850/2004/EC). Where applicable, the calculation method laid down in European standards EN 12766-1 and EN 12766-2 shall be applied.

Data source: Regulation 1272/2008/EC - Classification, labelling and packaging of substances and mixtures. (CLP)

Additional Hazard Statement(s): Carc. 1A H350 Reason for additional Hazards Statement(s):

29 Sep 2015 - Carc. 1A H350 hazard statement sourced from: IARC Group 1 (23, Sup 7, 100C) 2012

Appendix B: Rationale for selection of metal species

boron {diboron trioxide; boric oxide}

Diboron trioxide used as the most hazardous species.

sulfur {sulfur}

chemtest reports Elemental sulfur using this CAS

cyanides {salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex}

Available species

barium {barium oxide}

Chromium VII at limits of detection. Barium oxide used as the next most hazardous species. No chromate present.

cadmium {cadmium oxide}

Chromium VII at limits of detection. Cadmium oxide used as the next most hazardous species. No chromate present.

molybdenum (molybdenum(VI) oxide)

Worst case CLP species based on hazard statements/molecular weight.

antimony (antimony compounds, with the exception of the tetroxide (Sb2O4), pentoxide (Sb2O5), trisulphide (Sb2S3), pentasulphide (Sb2S5) and those specified elsewhere in this Annex}

Chromium VI at limits of detection. Antimony compounds used as the next most hazardous species. No chromate present.

arsenic {arsenic}

Worst Case Scenario

mercury {mercury}

Worst case CLP species based on hazard statements/molecular weight

nickel {nickel(II) oxide (nickel monoxide)}

Chromium VI at limits of detection. Nickel oxide used as the next most hazardous species. No chromate present.

lead {lead compounds with the exception of those specified elsewhere in this Annex}

Chromium VI at limits of detection. Lead compounds used as the next most hazardous species. No chromate present.

selenium (selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex)

Harmonised group entry used as most reasonable case. Pigment cadmium sulphoselenide not likely to be present in this soil. No evidence for the other CLP entries: sodium selenite, nickel II selenite and nickel selenide, to be present in this soil.

zinc {zinc oxide}

Chromium VI at limits of detection. Zinc oxide used as the next most hazardous species. No chromate present.

chromium in chromium(III) compounds {chromium(III) oxide}

Reasonable case species based on hazard statements/molecular weight. Industrial sources include: tanning, pigment in paint, inks and glass

chromium in chromium(VI) compounds {chromium(VI) oxide}

Worst case CLP species based on hazard statements/molecular weight. Industrial sources include: production stainless steel, electroplating, wood preservation, anti-corrosion agents or coatings, pigments.

Page 24 of 25 6UBJ4-4FFZ4-3JRLA www.hazwasteonline.com

Appendix C: Version

HazWasteOnline Classification Engine: WM3 1st Edition v1.1, May 2018

HazWasteOnline Classification Engine Version: 2021.197.4823.9172 (16 Jul 2021)

HazWasteOnline Database: 2021.197.4823.9172 (16 Jul 2021)

This classification utilises the following guidance and legislation:

WM3 v1.1 - Waste Classification - 1st Edition v1.1 - May 2018

CLP Regulation - Regulation 1272/2008/EC of 16 December 2008

1st ATP - Regulation 790/2009/EC of 10 August 2009

2nd ATP - Regulation 286/2011/EC of 10 March 2011

3rd ATP - Regulation 618/2012/EU of 10 July 2012

4th ATP - Regulation 487/2013/EU of 8 May 2013

Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013

5th ATP - Regulation 944/2013/EU of 2 October 2013

6th ATP - Regulation 605/2014/EU of 5 June 2014

WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014

Revised List of Waste 2014 - Decision 2014/955/EU of 18 December 2014

7th ATP - Regulation 2015/1221/EU of 24 July 2015

8th ATP - Regulation (EU) 2016/918 of 19 May 2016

9th ATP - Regulation (EU) 2016/1179 of 19 July 2016

10th ATP - Regulation (EU) 2017/776 of 4 May 2017

HP14 amendment - Regulation (EU) 2017/997 of 8 June 2017

13th ATP - Regulation (EU) 2018/1480 of 4 October 2018

14th ATP - Regulation (EU) 2020/217 of 4 October 2019

15th ATP - Regulation (EU) 2020/1182 of 19 May 2020

The Chemicals (Health and Safety) and Genetically Modified Organisms (Contained Use)(Amendment etc.) (EU Exit)

Regulations 2019 - UK: 2019 No. 720 of 27th March 2019

The Chemicals (Health and Safety) and Genetically Modified Organisms (Contained Use)(Amendment etc.) (EU Exit)

Regulations 2020 - UK: 2020 No. 1567 of 16th December 2020

The Waste and Environmental Permitting etc. (Legislative Functions and Amendment etc.) (EU Exit) Regulations 2020 - UK:

2020 No. 1540 of 16th December 2020

POPs Regulation 2019 - Regulation (EU) 2019/1021 of 20 June 2019

Appendix 7
Survey Data

Survey Data

	Irish Transve	erse Mercator		Irish National Grid				
Location -	Easting Northing		- Elevation -	Easting	Northing			
	<u>-</u>	Bore	holes		-			
BH01	696609.491	731632.362	53.70	296679.760	231605.423			
BH02	696579.848	731601.659	53.47	296650.110	231574.713			
BH03	696567.126	731565.666	53.47	296637.386	231538.712			
BH04	696562.860	731533.252	53.47	296633.119	231506.291			
BH05	696548.949	731510.656	53.54	296619.205	231483.690			
BH06	696524.294	731519.011	53.50	296594.545	231492.047			
BH07	696506.532	731531.407	53.74	296576.779	231504.445			
BH08	696483.156	731545.307	53.31	296553.398	231518.348			
BH09	696508.860	731562.744	53.50	296579.107	231535.789			
BH10	696536.579	731569.832	53.49	296606.832	231542.879			
BH11	696533.013	731589.692	53.38	296603.265	231562.743			
BH12	696513.205	731584.987	53.21	296583.453	231558.037			
•		Tria	l Pits					
TP01	696580.756	731615.780	53.53	296651.018	231588.837			
TP02	696550.012	731571.860	53.41	296620.268	231544.907			
TP03	696502.777	731547.766	53.56	296573.023	231520.808			
TP04	696478.065 731573.702		53.14	296548.306	231546.749			
TP05	696530.617	696530.617 731534.629		296600.869	231507.668			
		Dynam	ic Probes					
DP01	696613.639	731632.854	53.63	296683.908	231605.915			
DP02	696609.483	731619.012	53.78	296679.752	231592.070			
DP03	696586.299	731604.303	53.49	296656.563	231577.357			
DP04	696578.565	731599.796	53.42	296648.827	231572.849			
DP05	696572.169	731581.457	53.52	296642.430	231554.506			
DP06	696571.225	731572.016	53.56	296641.486	231545.063			
DP07	696570.153	731567.291	53.50	296640.414	231540.337			
DP08	696569.900	731559.612	53.39	296640.161	231532.657			
DP09	696567.630	731553.024	53.41	296637.890	231526.067			
DP10	696566.202	731543.448	53.39	296636.462	231516.489			
DP11	696565.390	731532.957	53.53	296635.650	231505.996			
DP12	696563.611	731524.225	53.55	296633.870	231497.262			
DP13	696562.520	731511.793	53.59	296632.779	231484.827			
DP14	696553.097	731508.682	53.55	296623.354	231481.716			
DP15	696544.708	731509.707	53.53	296614.963	231482.741			
DP16	696531.065	731513.124	53.56	296601.318	231486.158			
DP17	696525.589	731516.142	53.52	296595.840	231489.177			
DP18	696520.902	731519.414	53.54	296591.152	231492.450			
DP19	696515.525	731523.359	53.62	296585.774	231496.395			
DP20	696508.454	731526.902	53.71	296578.702	231499.939			
DP21	696502.948	731530.592	53.76	296573.194	231503.630			

Survey Data

Location	Irish Transvo	erse Mercator	Elevation	Irish National Grid				
Location	Easting	Northing	Elevation	Easting	Northing			
DP22	696497.722	731534.093	53.70	296567.967	231507.132			
DP23	696486.869	731544.210	53.39	296557.112	231517.251			
DP24	696482.070	731542.898	53.35	296552.312	231515.939			
DP25	696478.116	731542.249	53.31	296548.357	231515.289			
DP26	696511.792	731559.686	53.54	296582.040	231532.730			
DP27	696510.826	731565.680	53.57	296581.074	231538.726			
DP28	696509.011 731587.338		53.11	296579.258	231560.388			
DP29	696516.609	731588.393	53.24	296586.858	231561.444			
DP30	696534.969 731593.892	53.41	296605.222	231566.944				
DP31	696535.510	731587.909	53.42	296605.763	231560.960			
DP32	696541.024	731568.319	53.44	296611.278	231541.365			
DP33	696532.513	731566.843	53.56	296602.765	231539.889			
		Founda	ation Pit					
FP01	01 696622.847 731639.121		53.64	296693.118	231612.183			
		California Bear	ring Ratio Tes	sts				
CBR01	696611.266	731623.870	53.78	296681.535	231596.929			
CBR02	696558.013	731592.310	53.45	296628.271	231565.362			
CBR03	696549.412	731524.622	53.46	296619.668	231497.659			
CBR04	696531.008	731553.256	53.50	296601.260	231526.299			
CBR05	696494.778	731578.152	53.35	296565.022	231551.200			

www.tobin.ie

in TOBIN Consulting Engineers

@tobinengineers

Galway

Fairgreen House, Fairgreen Road, Galway, H91 AXK8, Ireland.

Tel: +353 (0)91 565 211

Dublin

Block 10-4, Blanchardstown Corporate Park, Dublin 15, D15 X98N, Ireland. Tel: +353 (0)1 803 0406

Castlebar

Market Square, Castlebar, Mayo, F23 Y427, Ireland.

Tel: +353 (0)94 902 1401